

PAL®/PLETM
Programmable Logic
Handbook

PAL/HAL ® Device Specifications

PAL Device Applications

Logic Tutorial

PLE Circuit Applications

Article Reprints

* PAce, HALe, PAlASM8 and SKINNYDIP8 are registered trademarks of Monolithic Memories.
PLE"-, MegaPAL", ZHAL·· and SMAC·· are trademarks of Monolithic Memories.

c Copyright 1978.1981.1983.1985 Monolithic Memories Inc .• 2175 Mission College Blvd .• Santa Clara. CA 95054-1592. (408) 970-9700. (910) 339-9220

Monolllhlem
MemorIes

THE PAL DEVICE INTRODUCTION 1-5

THE PAUHAL DEVICE SPECiFiCATIONS 2-1
Table of Contents for Section 2 2-2
The PAUHAL Device Specifications 2-3
The PAL Device InpuVOutpuVFunction/

Performance Chart 2-5
Logic Symbols 20 Pin PAUHAL Devices 2-8
Logic Symbols 24 Pin PAUHAL Devices 2-10
Logic Symbols MegaPAL Device 2-12
Standard PAUHAL Device Series 20

10H8. 12H6, 14H4, 16H2, 16C1. 10L8.
12L6.14L4.16L2•.......... 2-13

Fast Series 24A
20L8A, 20R8A, 20R6A. 20R4A•..•.... 2-14

Standard PAUHAL Device Series 24
12L 10. 14L8. 16L6. 18L4, 20L2. 20C1•..•....... 2-15

Standard PAUHAL Device Series 20
16L8. 16R8. 16R4. 16X4. 16A4 2-16

Standard PAUHAL Device Series 24
20X10.20X8.20X4.20L10 2-17

Fast PAUHAL Device Seriese 20A, 20AP
16L8A. 16R8A. 16R6A. 16R4A, 16P8A. 16RP8A,
16RP6A.16RP4A 2-18

Half-Power Series 20-2
10H8-2. 12H6-2. 14H4-2. 16H2-2. 16C1-2.
10L8-2. 12L6-2. 14L4-2. 16L2-2 2-19

Half-Power Series 20A-2
16L8A-2. 16R8A-2, 16R6A-2. 16R4A-2•.......... 2-20

Quarter-Power Seres 20A-4
16L8A-4. 16R8A-4. 16R6A-4. 16R4A-4 2-21

PAL20RA10 Device 2-22
Series 24RS. 20S10. 20RS10. 20RS8, 20RS4 2-23
PAL32R16. HAL32R16 2-24
PAUHAL64R32•....................... 2-25
PAUHAL Device

Switch Waveforms 2-27
Output Register PRELOAD Series 20AP 2-27
Output Register PRELOAD Series 24RS ...•........ 2-27

Logic Diagrams

10H8•.....•..•..•.................... 2-28
12H6•................................... 2-29
14H4•...................................... 2-30
16H2 2-31
16C1 2-32
10L8•................................... 2-33
12L6•.............. 2-34
16L8 2-35
16R4 2-36
14L4 2-37
16L2•..•..................•.............. 2-38
16R8 2-39
16R6•.........•.............. 2-40
16X4•..................... 2-41
16A4•.................. 2-42
16P8•........•..................... 2-43
16RP8•............•........................ 2-44
16RP6 2-45
16RP4•............................ 2-46
12L10 2-47
14L8•.....•..•...................... 2-48

16L6•.........•..•..•..... 2-49
18L4•........................... 2-50
20L2•........•.........•..•........ 2-51
20C1 • . . • • • 2-52
20L1 0•........................... 2-53
20L8•..•........•..•.........•.............. 2-54
20R8•........•.........•..•.............. 2-55
20R6 2-56
20R4 2-57
20X10 2-58
20X8•..•........................ 2-59
20X4•..•.....•..•..•......•..••.......... 2-60
20RA 10•..•........................ 2-61
20S10•..•........................ 2-62
20RS4•.....•........................ 2-63
20RS8•.........................•.......... 2-64
20RS10•...............•......•....... 2-65
32R16 2-66
64R32 2-67

Programmer/Development System 2-68

Die Configurations
PAL20RA10 2-68
PAL32R16•........•................•....... 2-69
PAL64R32•...................•.... 2-69

PAL DEVICE APPLICATIONS 3-1
Table of Contents for Section 3•.... 3-2
A Work Session Using PALASM2 Menu 3-3

A. Combinational Applications
1. Basic Gates (Positive Logic) 3-7
2. Basic Gates (Negative Logic) 3-7
3. 4 to 16 Decoder 3-9
4. PC I/O Mapper 3-10
5. Multiplexers 4:1 Multiplier. 3-11
6. Octal Comparator 3-13
7. 3 to 8 Demultiplexer•....... 3-14
8. Octal Latch 3-15

B. Synchronous Applications
9. Basic Flip-Flops 3-16

10. 9-Bit Register 3-17
11. 10-Bit Register 3-18
12. 16-Bit Barrel Shiller 3-19
13. Addressable Register•.............. 3-21
14. Traffic Signal Controller 3-23
15. Memory Handshake Logic 3-25

C. Counter Applications
16. 4-Bit Counter•.....•.....•........ 3-27
17. 8-Bit Counter 3-28
18. 9-Bit Counter•......•................. 3-29
19. 10-Bit Counter 3-30
20. 5-Bit Up Counter•..................... 3-31
21 5-Bit Down Counter • 3-33

D. Asynchronous Applications
22. 7-Bitl/0 Port with Handshake Logic 3-35
23. Serial Data Link 3-37
24. Interrupt Controller 3-40

E. Video Frame Grabber .. 3-44

Monolithic mMemories

Table of Contents (cont.)

LOGIC TUTORIAL 4-1 PALASM® SOFTWARE SYNTAX 5-1
Table of Contents for Section 4•........ 4-2 Table of Contents for Section 5 5-2
1.0 Boolean Algebra Introduction ··· 5-3

1.1 The Language of Logic 4-3 Structure of PAL Device Design Specifications 5-5
1.2 AND. OR and NOT 4-3 Section 1: Declaration Section 5-6
1.3 Precedence 4-3 Section 2: Functional Description•........ 5-8
1.4 Associativity and Commutativity 4-4 Section 3: Simulation 5-13
1.5 Postulates and Theorems 4-4 Simulation Syntax Overview 5-14

1.5.1 Duality 4-4 Details of the Simulation Syntax 5-14
1.5.2 Using Truth TAbles 4-4
1.5.3 Complement of a Boolean Function 4-4

1.6 Algebra Simplification 4-5
1.6.1 SOF and POS 4-5
1.6.2 Canonical Forms 4-5
1.6.3 Conversion Between Canonical Forms 4-6

2.0 Binary Systems
2.1 Base Conversion .

2.1.1 Base 2 to Base 10 Conversion .
2.1.2 Base 10 to Base 2 Conversion .
2.1.3 Base 2 to Base 8•...

2.2 Simplicity of Binary Arithmetic .
2.2.1 1's Complement .
2.2.2 Subtraction with 1's Complement .
2.2.3 2's Complement .
2.2.4 Subtraction with 2's Complement .

3.0 Karnaugh Map
3.1 Karnaugh Map Technique .

3.1.1 Karnaugh Map Reading Procedure ...•...
3.1.2 Karnaugh Map Matrix Labels .
3.1.3 Karnaugh Map Examples .

4.0 Combinational Logic
4.1 Introduction•...............
4.2 Combinational Logic•..................
4.3 NAND and NOR gates ...•...........•......
4.4 Multiplexers .
4.5 Decoders .
4.6 Magnitude Comparator .
4.7 Adder•........•.........
4.8 Hazard•..•.........

5.0 Sequential Logic
5.1 Introduction•..•......................
5.2 Latches•..•..•.........

5.2.1 RS Latch ...•.........•..•..•.........
5.2.2 D LatCh•..................
5.2.3 JK Latch•..•..•.........
5.2.4 T LatCh .

5.3 Flip-Flops .
5.3.1 Characteristic Equations .

5.4 Designing Sequential Logic .
5.4.1 Transition Tables .
5.4.2 State Tables and Slate Diagrams .
5.4.3 Design Examples .

5.5 Counters•.........

4-10
4-10
4-11
4-12
4-13
4-15
4-15
4-18

4-20
4-20
4-20
4-21
4-22
4-22
4-22
4-22
4-23
4-23
4-23
4-24
4-28

PLE™CIRCUIT INTRODUCTION 6-1
Table of Contents for Section 6 6-2
An Introduction to Programmable Logic Elements 6-3

PLE CIRCUIT SPECIFICATIONS 7-1
Table of Contents for Section 7 7-2
PLE Device to PROM Cross Reference 7-3

Programmable Logic Element PLE Device Family 7-4
PLE Device Selection Guide 7-4
PLE Device Means Programmable Logic Element 7-5
Registered PLE Devices 7-5
PLEASM Software 7-6
PLE Logic Symbols 7-7
PLE Family Specifications ...•..................... 7-9
PLE9R8 Specifications•..•.... 7-11
PLE10R8. 11RA8, 11RS8•..•. 7-13
PLE Device Family SWitching Test Load 7-14

Definition of Waveforms 7-14
Definition of Timing Diagram 7-14

PLE Device Family Programming Instructions 7-15

PLE Device Family Block Diagrams
PLE5P8/A•... 7-17
~~~ ....................•..•................ ~7
PLE8P8 ........•.....•......................... 7-17
PLE9P4 ..............•..•..•................... 7-17
PLE9P8 7-18
PLE10P4 ....•.................................. 7-18
PLE10P8 ....•.................................. 7-18
PLEllP4 .........................•............. 7-18
PLEllP8 .........................•............. 7-19
PLE12P4 .........................•......•...... 7-19
PLE12P8 ....•..•...........................•... 7-19
PLE9R8 .......................•................ 7-20
PLE10R8 ......................•................ 7-20
PLEll RA8 7-20
PLEll RS8 7-20

PLE Device Programmer Reference Chart 7-21



Table of Contents (cont.)

PLE CIRCUIT APPLICATIONS 8-1
Table of Contents for Section 8 8-2

Random Logic Replacement
Basic Gates 8-3
Memory Address Decoder 8-6
6-Bit True/Complement and Clear/Set

Logic Functions 8-10
Expandable 3-to-8 Demultiplexer .. . . . . . . . . . . . • . . .. 8-12
Dual 2:1 Multiplexer ........................•.... 8-14
Quad 2:1 Multiplexer with Polarity Control 8-15
Hexadecimal to Seven Segment Decoder 8-17
5-Bit Binary to BCD Converter ...............•.... 8-20
4-Bit BCD to Gray Code Converter .....•.......... 8-22
4-Bit Gray Code to BCD Converter 8-23
8-Bit Priority Encoder .......................•.... 8-24
4-Bit Magnitude Comparator ..........•.....•.... 8-26
6-Bit Magnitude Comparator ..........•.......... 8-27
4-Bit Magnitude Comparator with

Polarity Control 8-28
8-Bit Barrel Shiller . . . . . . . . . . . . . . . . . . . .. 8-30
4-Bit Right Shiller with Programmable

Output Polarity 8-33
8-Bit Two's Complement Conversion 8-36
A portion of Timing Generator for PAL

Array Programming 8-38
Timing Generator for PAL Security

Fuse Programming 8-41
Fast Arithmetic Look-up ......................•..... 8-44

4-Bit Multiplier Look-up Table . . . . . . . . . . . . . . . .. 8-45
ARC Tangent Look-up Table 8-46
Hypotenuse of a Right Triangle Look-Up Table 8-48
Perimeter of a Circle Look-Up Table 8-51
Period of Oscillation for a Mathematical

Pendulum Look-up Table .................•..... 8-54
Arithmetic Logic Unit 8-57

Wallace Tree Compression 8-58
Seven 1-Bit Integer Row Partial Products Adder 8-60
Five 2-Bit Integer Row Partial Products Adder 8-61
Four 3-Bit Integer Row Partial Products Adder 8-62
Three 4-Bit Integer Row Partial Products Adder 8-63
Residue Arithmetic Using PLE Devices 8-64
Distributed Arithmetic Using PLE Devices 8-70
Registered PLE Devices in Pipelined Arithmetic 8-72

ARTICLE REPRINTS 9-1
Table of Contents for Section 9 9-2
Testing Your PAL Devices 9-3
PAL20RA10 Design for Testability ................•.... 9-8
PAL Design Function and Test Vectors ............•... 9-10
Metastabi Iity 9-13
Fast 64x64 Multiplication Using 16x16 Flow-

Through Multiplier and Wallace Trees 9-17
High-Speed PROMs with On-Chip Registers

and Diagnostics 9-29
Diagnostic Devices and Algorithms for

Testing Digital Systems 9-41
A Copiler for Programmable Logic in FORTH 9-53
High-Speed Bipolar PROMs Find New

Applications as Programmable Logic Elements 9-62
ABEL" a Complete Design Tool for

Programmable Logic .....................•..•.... 9-69
CUPL'" the Universal Compiler for

Programmable Logic 9-73



The PAL® Concept
Monolithic Memories' family of PAL devices gives
designers a powerful tool with unique capabilities for use
in new and existing logic designs. The PAL circuit saves
time and money by solving many of the system partitioning
and interface problems brought about by increases in
semiconductor device technology.

Rapid advances in large-scale integration technology
have led to larger and larger standard logic functions;
single I.C.s now perform functions that formerly required
complete circuit cards. While LSI offers many advan-
tages, advances have been made at the expense of
device flexibility. Most LSI devices still require large
numbers of SSIIMSI devices for interfacing with user
systems. Designers are still forced to turn to random
logic for many applications.

The designer is confronted with another problem when a
product is designed. Often the function is well defined and
could derive significant benefits from fabrication as an
integrated circuit. However, the design cycle for a custom
circuit is long and the costs can be very high. This makes
the risk significant enough to deter most users. The tech-
nology to support maximum flexibility combined with fast
turnaround on custom logic has simply not been available.
Monolithic Memories offers the programmable solution.

The PAL device family offers a fresh approach to using
fuse programmable logic. PAL circuits are a conceptually
unified group of devices which combine programmable
flexibility with high speed and an extensive selection of
interface options. PAL devices can lower inventory, cut
design cycles and provide high complexity with maximum
flexibility. These features, combined with lower package
count and high reliability, truly make the PAL circuit a
designer's best friend.



The PAL Circuit - Teaching Old
PROMs New Tricks

Monolithic Memories developed the modern PROM and intro-
duced many of the architectures and techniques now regarded
as industry standards. As a major PROM manufacturer, Mono-
lithic Memories has the proven technology and high volume
production capability required to manufacture and support the
PAL device.

The PAL circuit is an extension of the fusible link technology
pioneered by Monolithic Memories for use in bipolar PROMs.
The fusible link PROM first gave the digital systems designer the
power to "write on silicon." In a few seconds he was able to
transform a blank PROM from a general purpose device into one
containing a custom algorithm, microprogram, or Boolean
transfer function. This opened up new horizons for the use of
PROMs in computer control stores, character generators, data
storage tables and many other applications. The wide accep-
tance of this technology is clearly demonstrated by teday's multi-
million dollar PROM market.

The key to the PROM's success is that it allows the designer to
quickly and easily customize the chip to fit his unique require-
ments. The PAL circuit extends this programmable flexibility by
utilizing proven link technology to implement logic functions.
Using PAL circuits the designer can quickly and effectively
implement custom logic varying in complexity from random
gates to complex arithmetic functions.

The PAL device implements the familiar sum of products logic
by using a programmable AND array whose output terms feed a

fixed OR array. Since the sum of products form can express any
Boolean transfer function, the PAL circuit uses are only limited
by the number of terms available in the AND - OR arrays. PAL
devices come in different sizes to allow for effective logic
optimization.

Figure 1 shows the basic PAL circuit structure for a two-input,
one-output logic segment. The general logic equation for this
segment is:

Output = (11+f1)(l1+f2)(12+f3)(l2+f4) +

where the '1" terms represent the state of the fusible links in the
PAL AND array. An un blown link represents a logic 1. Thus,

fuse blown, f = 0

fuse intact, f = 1

Logic equations, while convenient for small functions, rapidly
become cumbersome in large systems. To reduce possible
confusion, complex logic networks are generally defined by logic
diagrams and truth tables. Figure 2 shows the logic convention
adopted to keep PAL logic easy to understand and use. In the
figure, an "x" represents an intact fuse used to perform the logic
AND function. (Note: the input terms on the common line with
the x's are not connected together.) The logic symbology shown
in Figure 2 has been informally adopted by integrated circuit
manufacturers because it clearly establishes a one-to-one
correspondence between the chip layout and the logiC diagram.
It also allows the logic diagram and truth table to be combined
into a compact and easy to read form. thereby serving as a
convenient shorthand for PAL circuits. The two input - one out-
put example from Figure 1 redrawn using the new logic con-
vention is shown in Figure 3.



ABC
-++t--o-A-B'C

As a simple PAL logic example. consider the implementation of
the transfer function:

Output = 1112 + ~12

The normal combinatorial logic diagram for this function is
shown in figure 4. with the PAL logic equivalent shown in fig-
ure 5.

1121---rr=D~---.I....._------=t=:v- [)---11 i2 + 112

Using this logic convention it is now possible to compare the
PAL structure to the structure of the more familiar PROM and
PLA. The basic logic structure of a PROM consists of a fixed
AND array whose outputs feed a programmable OR array
(figure 6). PROMs are low-cost. easy to program, and available
in a variety of sizes and organizations. They are most commonly

used to store computer programs and data. In these ap-
plications the fixed input is a computer memory address; the
output is the contents of that memory location.

~ 7 ~ 7 "'i 7 ~ 7

f\j r-v jV IV
"""""

=<=<=<=<
=::
:::::::
:::::::
:::::::

~
:::::::

=:
~
=(

,

=:
=:-

" " YY9?
The basic logic structure of the PLA consists of a programmable
AND array whose outputs feed a programmable OR array
(Figure 7). Since the designer has complete control over all in-
puts and outputs. the PLA provides the ultimate flexibility for im-
plementing logic functions. They are used in a wide variety of
applications. However. this generality makes PLAs expensive.
quite formidable to understand, and costly to program (they
require special programmers).

The basic logic structure olthe PAL circuit. as mentioned earlier.
consists of a programmable AND array whose outputs feed a
fixed OR array (Figure 8). The PAL circuit combines much of the
flexibility of the PLA with the low cost and easy programmability
of the PROM. Table 1 summarizes the characteristics of the
PROM. PLA and PAL logic families.



---~ 7 ~ ~ 7 ~ 7rv I'J \It I'J
--..
=::
=::
=::
=::
=::
=::
=::
=::
=::
=:
=:
=:
=:
=:
::::::

--'

..
yyyy

PAL Device
41n-4 Out-16 Products

~ 7 ~ 7 ~ ~
V V V V

1"'"""'\

P=<
r=:
;:=::
=:
=:
=:
=::
::::::

=:
=:
::::::

=:
=:
=::
=::
--'

. .. YY??

AND OR OUTPUT OPTIONS

PROM Fixed Prog TS,OC
FPLA Prog Prog TS, OC, Fusible Polarity
FPGA Prog None TS, OC, Fusible Polarity
FPLS Prog Prog TS, Registered Feedback, I/O
PAL Circuit Prog Fixed TS, Registered Feedback, I/O



PART PROG. OUTPUT FEEDBACK
PERFORMANCE

INPUT OUTPUT FUNCTIONS
NO. I/O'S POLARITY REGISTER STD A -2 A-2 A-4

10HB 10 B AND-OR AND-OR Gate Array X X
12H6 12 6 AND-OR AND-OR Gate Array X X
14H4 14 4 AND-OR AND-OR Gate Array X X
16H2 16 2 AND-OR AND-OR Gate Array X X
16C1 16 2 BOTH' AND-OR/NOR Gate Array X X
10LB 10 B AND-NOR AND-OR Invert Gate Array X X
12L6 12 6 AND-NOR AND-OR Invert Gate Array X X
14L4 14 4 AND-NOR AND-OR Invert Gate Array X X
16L2 16 2 AND-NOR AND-OR Invert Gate Array X X

12L10 12 10 AND-NOR AND-OR Invert Gate Array X
14LB 14 B AND-NOR AND-OR Invert Gate Array X
16L6 16 6 AND-NOR AND-OR Invert Gate Array X
1BL4 18 4 AND-NOR AND-OR Invert Gate Array X
20L2 20 2 AND-NOR AND-OR Invert Gate Array X
20C1 20 2 BOTH' AND-OR/NOR Gate Array X
16LB 10 2 6 AND-NOR AND-OR Invert Gate Array X X X
20LB 14 2 6 AND-NOR AND-OR Invert Gate Array X

20L10 12 2 B AND-NOR AND-OR Invert Gate Array X

16RB B B B AND-NOR
AND-OR Invert Gate Array

X X X
w/Regs

16R6 B 6 2 6 AND-NOR
AND-OR Invert Gate Array

X X X
w/Regs

16R4 8 4 4 4 AND-NOR
AND-OR Invert Gate Array

X X X
w/Regs

20RB 12 B B AND-NOR AND-OR Invert w/Regs X
20R6 12 6 2 6 AND-NOR AND-OR Invert w/Regs X
20R4 12 4 4 4 AND-NOR AND-OR Invert w/Regs X

20X10 10 10 10 AND-NOR AND-OR-XOR Invert w/Regs X
20XB 10 B 2 B AND-NOR AND-OR-XOR Invert w/Regs X
20X4 10 4 6 4 AND-NOR AND-OR-XOR Invert w/Regs X
16X4 B 4 4 4 AND-NOR AND-OR-XOR Invert w/Regs X

16A4 B 4 4 4 AND-NOR
AND-CARRY-OR-XOR

X
Invert w/Regs

16PB 10 2 6 PROG2 AND-OR Gate Array X
16RPB B B B PROG2 AND-OR Gate Array w/Regs X
16RP6 8 6 2 6 PROG2 AND-OR Gate Array w/Regs X
16RP4 B 4 4 4 PROG2 AND-OR Gate Array w/Regs X

20RA10 10 103 103 PROG2 Asynchronous Gate Array X
20RS10 10 10 PROG2 AND-OR Gate Array w/Regs X
20RSB 10 2 B PROG2 AND-OR Gate Array w/Regs X
20RS4 10 6 4 PROG2 AND-OR Gate Array w/Regs X
20S10 10 10 PROG2 AND-OR Gate Array X
32R16 16 163 163 PROG2 AND-OR Gate Array w/Regs X
64R32 32 323 323 PROG2 AND-OR Gate Array w/Regs X

1Simultaneous AND-OR and AND-NOR outputs

2programmable active high or active low. Le. AND-OR or AND-NOR

30utput can be registered or non-registered

PAL Circuits for Every Task
The members of the PAL family and their characteristics are
summarized in Table 2. They are designed to cover the spectrum
of logic functions at reduced cost and lower package count. This
allows the designer to select the PAL circuit that best fits
his application. PAL units come in the following basic con-
figurations:

PAL logic arrays are available in sizes from 12x10 (12 inputterms,
10 output terms) to 20x2, with both active high and active low
output configurations available (Figure 9). This wide variety of
input/output formats allows the PAL device to replace many
different sized blocks of combinatorial logic with single packages.

D



'-..r

..
Programmable 1/0
A feature of the high-end members olthe PAL family is program-
mable inpuVoutput. This allows the produt terms to directly
control the outputs of the PAL circuit (Figure 10). One product
term is used to enable the three-state buffer, which in turn gates
the summation term to the output pin. The output is also fed back

into the PAL array as an input. Thus the PAL circuit drives the I/O
pin when the three-state gate is enabled; the I/O pin is an input to
the PAL array when the three-state gate is disabled. This feature
can be used to allocate available pins for I/O functions or to
provide bidirectional output pins for operations such as shifting
and rotating serial data.

)- -cL
----I~ t----..

I

Registered Outputs with Feedback
Another feature of the high end members of the PAL family is
registered data outputs with registered feedback. Each product
term is stored into a D-type output flip-flop on the rising edge of
the system clock (Figure 11). The Q output of the flip-flop can
then be gated to the output pin by enabling the active low three-
state buffer.

In addition to being available for transmission, the Q output is
fed back into the PAL array as an input term. This feedback
allows the PAL circuit to "remember" the previous state, and it
can alter its function based upon that state. This allows the
designerto configure the PAL circuit as a state sequencer which
can be programmed to execute such elementary functions as
count up, count down, skip, shift, and branch. These functions
can be executed by the registered PAL device at rates of up
to 25 MHz.

These PAL devices feature an exclusive OR function. The sum
of products is segmented into two sums which are then exclusive
ORed (XOR) at the input of the D-type flip-flop (Figure 12). All of

INPUTS, FEEDBACK AND 1/0

the features of the Registered PAL circuits are included in the
XOR PAL unit. The XOR function provides an easy implementa-
tion of the HOLD operation used in counters and other state
sequencers.

CLOCK Dc:
I



Programmable Output Polarity
The outputs can be programmed either active-low or active-
high. This is represented by the exclusive-or gates shown in
!-Igure 13, PAL20RA 10 Logic Diagram. When the output polarity
luse is blown, the lower input to the exclusive-or gate is high, so
the uutput is active-high. Similarly, when the output polarity fuse
IS Intact, the output is active-low. The programmable output
polarity feature allows the user a higher degree of flexibility
when writing equations.

Programmable Clock
One of the product lines in each group is connected to the clock.
This provides the user with the additional flexibility of a pro-
grammable clock, so each output can be clocked independently
of all the others. (See Figure 13.)

Programmable Set and Reset
r wo product lines are dedicated to asynchronous set and reset.
II the set product line is high, the register output becomes a logic
1. If the reset product line is high, the register output becomes a
logic O. The operation of the programmable set and reset over-
ndes the clock. (See Figure 13.)

Individually Programmable
Register Bypass
If both the set and reset product lines are high, the sum-of-
products bypasses the register and appears immediately at the
output, thus making the output combinatorial. This allows each
output to be configured in the registered or combinatorial mode.
(See Figure 13.)

The basic configuration is sixteen product terms shared between
two output cells. For a typical output pair, each product term can
be used by either output; but, since product term sharing is

exclusive, a product term can be used by only one output, not
both. If equations call for an output pair to use the same product
term, two product terms are generated, one for each output. This
should be taken into account when writing equations. PAL
assemblers configure product terms automatically.

~ .,..
"..

~.. ~",- ....--~. D Q -y.. r~.,
~., I:J~ ~"" ;::=

"" T
D Q ••....

"~ ~I~ -
~



For 1985,a number of new features havebeen incorporated into
the PAL family, including:

• Programmable output polarity for active high or active low
operation

• Register preload which allows complete functional testing

• Product term sharing*, a feature making the number of
product terms per output user-determinable

• Register bypass facilitating registered or combinatorial
outputs

• Asynchronous clocks, sets, resets and output enables
A full description of each function is given on page 5-17.

PAL Device Programming
PAL devices can be programmed in most standard PROM
programmers with the addition of a PAL personality card. The
PAL circuit appears to the programmer as a PROM. During
programming half of the PAL device outputs are selected for
programming while the other outputs and the inputs are used for
addressing. The outputs are then switched to program the other
locations. Verification uses the same procedure with the
programming lines held in a low state.

PALASM Software
(PAL Device Assembler)
PALASM software is used to define, simulate, build and test PAL
device units. PALASM software accepts the PAL circuit Design
Specification as an input file. It verifies the design against an
optional function table and generates the fuse plot which is used
to program the PAL devices. Presently, PALASM software is
being replaced by its successor: PALASM2 software. PALASM2
software has added features that simplify the task of defining
and simulating PAL Design Specifications.

HAL® Device (Hard Array Logic)
The HAL family is the mask-programmed version of a PAL
circuit. The HAL circuit is to a PAL circuit just as ROM is to a
PROM. A standard wafer is fabricated to the 6 mask. Then a
custom metal mask is used to fabricate aluminum links for a HAL
circuit instead of the programmable Ti-W fuse array used in a
PAL circuit.

The HAL device is a cost-effective solution for large quantities
and is unique in that it is a gate array with a programmable
prototype.

ZHALDevice
(Zero Power Hard Array Logic)
ZHAL devices are functionally identical to regular HAL devices
but with the added feature of consuming zero standby power.
This is highly desirable in portable digital equipment and lap-top
computers.

PAL Circuit Technology
PAL circuits are manufactured using the proven TTL Schottky
bipolar Ti-W fuse process to make fusible-link PROMs. An NPN
emitter follower array forms the programmable AND array. PNP
inputs provide high impedance inputs (0.25 mA max) to the
array. All outputs are standard TTL drivers with internal active
pull-up transistors. Typical PALcircuit propagation delay time is
less than 25 ns.

PAL Device Data Security
The circuitry used for programming and logic verification can be
used at any time to determine the logic pattern stored in the PAL
array. For security, the PAL array has a "last fuse" which can be
blown to disable the verification logic. This provides a significant
deterrent to potential copiers, and it can be used to effectively
protect proprietary designs.



12011

12011



The PAL device part number is unique in that the part number
code also defines the part's logic operation. The PAL device
parts code system is shown below. For example, a PAL 14L4CN
would be a 14 input term, 4 output term, active-low PAL with a
commercial temperature range packaged in a 20-pin plastic dip.

PAL" progra::J;Jl;:TFamily
HAL " Hard Array

Family

NUMBER OF
ARRAY INPUTS

OUTPUT TYPE
H ::: Active High
L = Active Low
C "Complementary
P = Programmable Polarity
R "Reglltentd
RA = Registered Asynchronous
S = Shared
X = Exclulive OR Registered
A = Arithmetic Registered

NUMBER OF OUTPUTS

SPEEO/POWER
A "High Speed
-2 :::1/2 Power
-4 "1/4_
A·2 = High SpeecI.nd 1/2 Power
A-4 ::: High Speed and 1/4 Power

1'-[~~~~~~"L-OPTIONAL PROCESSING
SHRP = Commerclal

Retlabillty Enhanced
XXXX "HI·ReI

PACKAGE
N = Plastic Dip
J = Ceramic Dip
F = Flat Pack
NL = P1"tie Leadle ••

Chip Carrier
NS = P!astic SKINNYOIP
JS :::Ceramic SKINNY DIP
L = Leadless

Chip Carrier
P = Pin Grid Array

L- TEMPERATURE CODE
C = Commercial
M = Military

PAL Circuit Logic Symbols
The logic symbols for each of the individual PAL devices gives a
concise functional description of the PAL logic function. This
symbol makes a convenient reference when selecting the PAL
device that best fits a specific application. Figure 18 shows the
logic symbol for a PAL 10H8 gate array.

A PAL Circuit Example
As an example of how the PAL device enables the designer to
reduce costs and simplify logic design, consider the design of a
simple, high-volume consumer product: an electronic dice

volume, so it is essential that every possible production cost be
minimized

The electronic dice game is simply constructed using a free
running oscillator whose output is used to drive two asyn-
chronous modulo six counters. When the user "rolls" the dice
(presses a button), the current state of the counters is decoded
and latched into a display resembling the pattern seen on an
ordinary pair of dice.

A conventional logic diagram for the dice game is shown in
Figure 15. (A detailed logic derivation is shown in the PAL device
applications section of this handbook). It is implemented using
standard TTL, 551 and M51 parts, with a totall.C. count of eight:
six quad gate packages and two quad D-Iatches. Looks like a
nice, clean logic design, right? Wrong!!

A brief examination of Figure 16 reveals two basic facts: first, the
circuit contains mostly simple, combinatorial logic, and second,
it uses a clocked state transition sequence. Remembering that
the PAL device family contains ample provision for these
features, the PAL device catalog is consulted. The PAL 16R8 has
all the required functions, and the entire logic content of the
circuit can be programmed into a single PAL circuit shown in
Figure 17.

In this example, the PAL circuit effected an eight-to-one package
count reduction and a significant cost savings. This is typical of
the power and cost-effective performance that the PAL family
brings to logic design.

2K
12011

12011

29011

12011

12011

12011

29011

12011

Figure 17



The PAL device has a unique place in the world of logic design.
Not only does it offer many advantages over conventional logic,
it also provides many features not found anywhere else. The PAL
family:

• Programmable replacement for conventional TTL logic.

• Reduces IC inventories substantially and simplifies their
control.

• Reduces chip count by at least 4 to 1.

• Expedites and simplifies prototyping and board layout.

• Saves space with 2D-pin and 24-pin SKINNYDIP® packages.

• High speed: 15ns typical propagation delay.

• Programmed on standard PROM programmers.

• Programmable three-state outputs.

• Special feature eliminates possibility of copying by
competitors.

All of these features combine together to lower product
development costs and increase product cost effectiveness. The
bottom line is that PAL units save money.

In both new and existing designs the PAL circuit can be used to
replace various logic functions. This allows the designer to
optimize a circuit in many ways never before possible. The PAL
circuit is particularly effective when used to provide interfaces
required by many LSI functions. PAL circuit fleXibility combined
with LSI function density makes a powerful team.

Design Flexibility
The PAL circuit offers the systems logic designer a whole new
world of options. Until now, the decision on logic system
implementation was usually between SSI/MSI logic functions
on one hand and microprocessors on the other. In many cases
the function required is too awkward to implement the first way
and too simple to justify the second. Now the PAL circuit offers
the designer high functional density, high speed, and low cost.
Even better, PAL devices come in a varity of sizes and functions,
thereby further increasing the designer's options.

By allowing designers to replace many simple logic functions
with single packages, the PAL device allows more compact P.C.
board layouts. The PAL space-saving 20-pin and 24-pin
"SKINNYDIP" package helps to further reduce board area while
simplifying board layout and fabrication. This means that many
multi-eard systems can now be reduced to one or two cards, and
that can make the difference between a profitable success or an
expensive disaster.

The PAL device family can be
used to replace up to 90% of
the conventional TTL family.
This considerably lowers both
shelVing and inventory cata-
loging requirements. Even
better, small custom modifica-
tions to the standard functions
are easy for PAL device users,
not so easy for standard TTL
users.



The PAL device family runs faster or equal to the best of bipolar
logic circuits. This makes the PAL circuit the ideal choice for
most logical operations or control sequence which requires a
medium complexity and high speed. Also, in many micro-
computer systems, the PAL circuit can be used to handle high-
speed data interfaces that are not feasible for the microprocessor
alone. This can be used to significantly extend the capabilities of
the low-cost, low-speed NMOS microprocessors into areas
formerly requiring high-cost bipolar microprocessors.

Easy Programming
The members of the PAL device family can be quickly and easily
programmed using standard PROM programmers. This allows
designers to use PAL circuits with a minimum investment in
special equipment. Many types of programmable logic, such as
the FPLA, require an expensive, dedicated programmer.

The PAL device verification logic can be completely disabled by
blowing out a special "last link." This prevents the unauthorized
copying of valuable data, and makes the PAL circuit perfect for
use in any application where data integrity must be carefully
guarded.

Summary
The PAL device family of logic devices offers designers new
options in the implementation of sequential and combinatorial
logic designs. The family is fast, compact, flexible, and easy to
use in both new and existing designs. It promises to reduce costs
in most areas of design and production with a corresponding
increase in product profitability.

A Great Performer!



CURRENT SOURCE
AND PROGRAMMABLE

CIRCUITRY

MISCELLANEOUS
AND TESTING

CIRCUITRY

~he ~deviee
connection !



Monolithic W Memories



PAL Device Applications

Logic Tutorial

PALASM® Software Syntax

PLEn, Circuit Introduction

PLE Circuit Specifications

PLE Circuit Applications

Article Reprints

Representatives/Distributors



The PAL/HAL Device Specifications 2-1

Table of Contents for Section 2 2-2

The PAl/HAL Device Specifications 2-3

The PAL Device InpuVOutpuVFunclion/
Performance Chart .....................•.......... 2-5

Logic Symbols 20 Pin PAl/HAL Devices 2-8

Logic Symbols 24 Pin PAl/HAL Devices 2-10

Logic Symbols MegaPAL Device 2-12

Standard PAl/HAL Device Series 20
10H8, 12H6, 14H4. 16H2. 16Cl. 10L8,
12L6, 14L4, 16L2 ........................•........ 2-13

Fast Series 24A
20L8A, 20R8A, 20R6A, 20R4A 2-14

Standard PAl/HAL Device Series 24
12L 10. 14L8. 16L6, 18L4. 20L2. 20Cl ......•........ 2-15

Standard PAl/HAL Device Series 20
16L8, 16R8, 16R4, 16X4, 16A4 .........•..•........ 2-16

Standard PAl/HAL Device Series 24
20Xl0. 20X8. 20X4, 20Ll0 2-17

Fast PAl/HAL Device Seriese 20A, 20AP
16L8A, 16R8A. 16R6A, 16R4A, 16P8A. 16RP8A,
16RP6A, 16RP4A 2-18

Half-Power Series 20-2
10H8-2, 12H6-2, 14H4-2, 16H2-2, 16Cl-2,
10L8-2. 12L6-2, 14L4-2. 16L2-2 ............•....... 2-19

Half-Power Series 20A-2
16L8A-2, 16R8A-2, 16R6A-2, 16R4A-2 2-20

Quarter-Power Seres 20A-4
16L8A-4, 16R8A-4, 16R6A-4, 16R4A-4 2-21

PAL20RA 10 Device 2-22

Series 24RS, 20S10, 20RS10, 20RS8, 20RS4 ...•..•.... 2-23

PAL32R16, HAL32R16 2-24

PAl/HAL64R32 ...................•................ 2-25

PAl/HAL Device
Switch Waveforms . . . . . . . . . . . . . .. 2-27
Output Register PRELOAD Series 20AP 2-27
Output Register PRELOAD Series 24RS 2-27

Logic Diagrams

10H8 .. . .. . .. .. . 2-28
12H6 .......•.....•............................. 2-29
14H4 2-30
16H2 ....•............•......................... 2-31
16Cl .....................................•..... 2-32
10L8 ............•............................... 2-33
12L6 .....•...................................... 2-34
16L8 ............................•.....•......... 2-35
16R4 ...............................•......•..... 2-36
14L4 ............................•............... 2-37
16L2 ...............•..•......•.....•............ 2-38
16R8 ............................•............... 2-39
16R6 2-40
16X4 2-41
16A4 ............................•............... 2-42
16P8 ............................•............... 2-43
16RP8 2-44
16RP6 2-45
16RP4 ..........................•..•............ 2-46
12L1 0 2-47
14L8 ............................•............... 2-48
16L6 ...................................•........ 2-49
18L4 ............................•..•............ 2-50
20L2 2-51
20Cl . . . . • . . . . . . . . . . . . . . . . . . . . . • . . . . . . • . . . .. 2-52
20L1 0 ..............•..•............•............ 2-53
20L8 ...............................•......•..... 2-54
20R8 ............................•............... 2-55
20R6 .........•.....................•............ 2-56
20R4 .....•...................................... 2-57
20Xl0 2-58
20X8 2-59
20X4 2-60
20RA10 2-61
20S10 .................................•......... 2-62
20RS4 2-63
20RS8 . . . . . . . . . . . . . . . .. 2-64
20RS10 .....................•.........•......... 2-65
32R16 . .. . .. . .. . .• . .• . .. . . •. . •. .. . .. . .. . . .. . . . 2-66
64R32 . . . .. . .. . . .. .. . .. . .. . .. . . . 2-67

Programmer/Development System 2-68

Die Configurations
PAL20RA10 ..............•..•..•.........•...... 2-68
PAL32R16 ......................•................ 2-69
PAL64R32 2-69

Monolithic W Memories



PAL® Device-Programmable Array Logic
HAL® Device-Hard Array Logic

• Reduces SSIIMSI chip count greater than 5 to 1

• Savesspace with SKINNYDIP® packages

• Reduces Ie Inventor1ellsubstantlally

• Expedites and simplifies prototyplng and board layout

• PALASM'· silicon compiler provides auto routing and test
vectors

• Securlty fuse reduces possibility of copying by competitors

Description
The PAL device family utilizes an advanced Schottky TTL
processand the Bipolar PROMfusible link technology to provide
user programmable logic for replacing conventional SSIIMSI
gates and flip-flops at reduced chip count.

The HAL device family utilizes standard Low-Power Schottky
TTL process and automated mask pattern generation directly
from logic equations to provide a semicustom gate array for
replacing conventional SSI/MSI gates and flip-flops at reduced
chip count.

There are four different speed/power families offered. Choose
from either the standard, high-speed, half-power, or quarter-
power family to maximize design performance.

The PAUHAL device family lets the systems engineer "design
his own chip" by blowing fusible links to configure AND and OR
gates to perform his desired logic function. Complex inter-
connections which previously required time-consuming layout
are thus "lifted" from PC board etch and placed on silicon where
they can be easily modified during prototype check-out or
production.
The PALdevice transfer function is the familiar sum of products.
Like the PROM, the PALdevice hasa single array of fusible links.
Unlike the PROM, the PALdevice isa programmable AND array
driving a fixed OR array (the PROM isa fixed AND array driving a
programmable OR array).
The PALdevice transferfunction is the familiar sum of products.
Like the PROM, the PAL device has a single array of fusible
links. Unlike the PROM,the PALdevice isa programmable AND
array driving a fixed OR array (the PROM is a fixed AND array
driVing a programmable OR array).

• Variable input/output pin ratio

• Programmable three-state outputs

• Registers with feedback

• Arithmetic capability

• Exclusive-OR gates

• Other options identified on page 5-17

Unused inputs are tied directly to VCC or GND. Product terms
with all fuses blown assume the logical high state, and product 2
terms connected to both true and complement of any single
input assume the logical low state. Registers consist of D-type
flip-flops which are loaded on the low-to-high transition of the
clock. PAUHAL Circuit Logic Diagrams are shown with all fuses
blown, enabling the designer to use the diagrams as coding
sheets.

The entire PAL device family is programmed using inexpensive
conventional PROM programmers with appropriate personality
and socket adapter cards. Once the PAL device is programmed
and verified, two additional fuses may be blown to defeat verifi-
cation. This feature gives the user a proprietary circuit which is
very difficult to copy.

To design a HAL device, the user first programs and debugs a
PAL circuit using PALASM software and the "PAL DESIGN
SPECIFICATION" standard format. This specification is sub-
mitted to Monolithic Memories where it is computer processed
and assigned a bit pattern number, e.g., P01234.

Monolithic Memories will provide a PAL device sample for
customer qualification. The user then submits a purchase order
for a HAL device of the specified bit pattern number, e.g.,
HAL18L4 P01234.See Ordering Information below.

Ordering Information

PAL ~ progra::J;Jl~16L8 -2 M c=J T ~RNNUMBER
HAL = ~~I~y L-OPTIONAL PROCESSING

Family SHRP ;:;~~~~nh.nced

NUMBER OF XXXX ;:; HI-Rei

ARRAYINPUTS PACKAGE
OUTPUTTYPE N ~ PIa.tlc Dip

H = Active High J = Ceramic Dip
l = Active Low F = Flat P.ck
C : Complementary Nl = ~~~=Ie"

= : ::,r:-::
able

NS = PlasticSKINNYDIP
RA = Registered Asynchronous JS = ee,.mlc SKINNYDIP
S = Shared L = Leadlesl
X = Exclusive OR Registered C.hip c.rrier
A = Arithmetic Reglltered P = Pin Grid Array

NUMBEROF OUTPUTS

SPEED/POWER
A ~ HlghSpMd
-2 = 1/2 Power
-4 = 1/4 Power
A-2 ~ High SpMd and 1/2_,
A-4 = Htgh Speed and 1/4 Power

L-----TEMPERATURE CODE
C = Commercial
M ~ MUlUlry

Monolithic m~11
Memories In.InJJ

2·3



Register Bypass
Outputs within a bank must either be all registered or all com-
binatorial. Whether or not a bank of registers is bypassed
depends on how the outputs are defined in the equations. A
colon followed by an equal sign [;=) specifies a registered output
with feedback which is updated after the low-to-high transition of
the clock. An equal sign [=) defines a combinatorial output
which bypasses the register. Registers are bypassed in banks of
eight. Bypassing a bank of registers eliminates the feedback
lines for those outputs.

Output Polarity
Output polarity is defined by comparison of the pin list and the
equations. If the logic sense of a specific output in the pin list is
different from the logic sense of that output as defined by its
equation, the output is inverted or active low polarity. If the logic
sense of a specific output in the pin list is the same as the logic
sense of that output as defined by its equation, the output is
active high polarity.

Product Term Sharing
The basic configuration is sixteen product terms shared between
two output cells. For a typical output pair, each producllerm can
be used by either output; but, since product term sharing is
exclusive, a product term can be used by only one output, not
both. If equations call for an output pair to use the same product
term, two product terms are generated, one for each output. This
should be taken into account when writing equations. PAL circuit
assemblers configure product terms automatically.

This example uses the 84-pin package. Four output equations
are shown to demonstrate functionality. Pin names are arbitrary.

Product Term Editing
A unique feature of product term sharing is the ability to edit the
design after the device has been programmed. Without this
feature, a new PAL device had to be programmed if the user
needed to change his design. Product term editing allows the
user to delete an unwanted product term and reprogram a
previously unused product term to the desired fuse pattern. This
feature is made possible by the product term sharing architec-
ture. Since each producllerm can be routed to either output in a
given pair by selecting one of two steering fuses, it is possible to
blow both of the steering fuses thereby completely disabling that
product term. Once disabled, that product term is powered
down, saving typically 0.25 mA. The desired change may now be
programmed into one of the previously unused product terms
corresponding to that output pair. Additional edits can be made
as long as there are unused product terms for the output in
question.

PRESET Feature
(PAL64R32 device only)
Register banks of eight may be PRESET to all highs on the out-
puts by setting the PRESET pin (PS) to a Low level. Note from the
Logic Diagram that when the state of an output is High, the state
of the register is Low due to the inverting tri-state buffer.

PAL Device Testability Features
Preload pins have been added to enable the testability of each
state in state-machine design. Typically, fora modulo-n counter
or a state machine there are many unreachable states for the
registers. These states, and the logic which controls them are
untestable without a way to "set-in" the desired starting state of
the registers. In addition, long test sequences are sometimes
needed to test a state machine simply to reach those starting
states which are legal. Since complete logic verification is
needed to ensure the proper exit from "illegal" or unused states,
a way to enter these states must be provided. The ability to pre-
load a given bank of registers is provided in this device.

To use the preload feature, several steps must be followed. First,
a high level on an assertive-low output enable pin disables the
outputs for that bank of registers. Next, the data to be loaded is
presented at the output pins. This data is then loaded into the
register by placing a low level on the PRELOAD pin. PRELOAD
is asynchronous with respect to the clock.

Programmable Set and Reset
(PAL20RA 10 only)
In each SMAC, two product lines are dedicated to asynchronous
set and reset. If the set product line is high, the register output
becomes a logic 1. If the reset product line is high, the register
output becomes a logic 0 and the output pin a logic 1 due to
output buffer inversion. The operation of the programmable set
and reset overrides the clock.

Individually Programmable
Register Bypass (PAL20RA 10 only)
If both the set and reset product lines are high, the sum-of-
products bypasses the register and appears immediately at the
output, thus making the output combinatorial. This allows each
output to be configured in the registered or combinatorial mode.

Programmable Clock
(PAL20RA 10 only)
One of the product lines in each group is connected to the clock.
This provides the user with the additional flexibility of a pro-
grammable clock, so each output can be clocked independently
of all the others.



GENERI C PINS PACKAGE DESCRIPTION
PART NUMBER

LOGIC STANDARD HIGH SPEED 1/2 POWER 1/4 POWER

10H8 20 N,J,F,L,NL
Octal 10 Input And-Or PAL 10H8 PAL10H8-2
Gate Array HAL10H8 HAL10H8-2

12H6 20 N,J,F,L,NL Hex 12 Input And-Or PAL12H6 PAL12H6-2
Gate Array HAL12H6 HAL12H6-2

14H4 20 N,J,F,L,NL
Quad 14 Input And-Or PAL14H4 PAL14H4-2
Gate Array HAL14H4 HAL14H4-2

16H2 20 N,J,F,L,NL
Dual 16 Input And-Or PAL16H2 PAL16H2-2
Gate Array HAL 16H2 HAL 16H2-2

16C1 20 N,J,F,L,NL
16 Input And-Or/Nor PAL16C1 PAL 16C1-2
Gate Array HAL16C1 HAL16C1-2

10L8 20 N,J,F,L,NL Octal 10 Input And-Or PAL10L8 PAL10L8-2
Invert Gate Array HAL10L8 HAL 10L8-2

12L6 20 N,J,F,L,NL Hex 12 Input And-Or-Invert PAL12L6 PAL12L6-2
Gate Array HAL12L6 HAL 12L6-2

14L4 20 N,J,F,L,NL Quad 14 Input And-Or-Invert PAL14L4 PAL 14L4-2
Gate Array HAL14L4 HAL14L4-2

16L2 20 N,J,F,L,NL
Dual 16 Input And-Or-Invert PAL16L2 PAL 16L2-2
Gate Array HAL16L2 HAL16L2-2

16L8 20 N,J,F,L,NL Octal 16 Input And-Or-Invert PAL16L8 PAL 16L8A PAL16L8A-2 PAL16L8A-4
Gate Array HAL 16L8 HAL16L8A HAL 16L8A-2 HAL16L8A-4

16R8 20 N,J,F,L,NL Octal 16 Input Registered PAL16R8 PAL16R8A PAL16R8A-2 PAL16R8A-4
And-Or Invert Gate Array HAL16R8 HAL16R8A HAL16R8A-2 HAL16R8A-4

16R6 20 N,J,F,L,NL Hex 16 Input Registered PAL16R6 PAL16R6A PAL16R6A-2 PAL16R6A-4
And-Or Invert Gate Array HAL16R6 HAL16R6A HAL16R6A-2 HAL16R6A-4

16R4 20 N,J,F,L,NL Quad 16 Input Registered PAL16R4 PAL 16R4A PAL16R4A-2 PAL16R4A-4
And-Or Invert Gate Array HAL16R4 HAL 16R4A HAL16R4A-2 HAL 16R4A-4

16X4 20 N,J,F,L,NL Quad 16 Input Registered PAL 16X4
And-Or-Xor Invert Gate Array HAL16X4

16A4 20
Quad 16 Input Registered PAL16A4N,J,F,L,NL And-Carry-Or-Xor Invert
Gate Array

HAL16A4

12L10 24 (28) NS,JS,F,(L),(NL)
Deca 12 Input And-Or-Invert PAL 12L 10
Gate Array HAL12L10

14L8 24(28) NS,JS,F,(L),(NL) Octal 14 Input And-Or-Invert PAL14L8
Gate Array HAL 14L8

16L6 24 (28) NS,JS,F,(L),(NL) Hex 16 Input And-Or-Invert PAL16L6
Gate Array HAL16L6

18L4 24(28) NS,JS,F,(L),(NL) Quad 18 Input And-Or-Invert PAL18L4
Gate Array HAL18L4

20L2 24(28) NS,JS,F,(L),(NL) Dual 20 Input And-Or-Invert PAL20L2
Gate Array HAL20L2

20C1 24 (28) NS,JS,F,(L),(NL) 20 Input And-Or/Nor PAL20C1
Gate Array HAL20C1

20L10 24(28) NS,JS,F,(L),(NL) Deca 20 Input And-Or-Invert PAL20L10
Gate Array HAL20L10

20X10 24(28) NS,JS,F,(L),(NL) Deca 20 Input Registered PAL20X10
And-Or-Xor Invert Gate Array HAL20X10

20X8 24(28) NS,JS,F,(L),(NL) Octal 20 Input Registered PAL20X8
And-Or-Xor Invert Gate Array HAL20X8

20X4 24 (28) NS,JS,F,(L),(NL) Quad 20 Input Registered PAL20X4
And-Or-Xor Invert Gate Array HAL20X4

20L8 24(28) NS,JS,F,(L),(NL) Octal 20 Input And-Or-Invert PAL20L8A
Gate Array HAL20L8A

20R8 24(28) NS,JS,F,(L),(NL) Octal 20 Input Registered PAL20R8A
And-Or Invert Gate Array HAL20R8A

20R6 24 (28) NS,JS,F,(L),(NL) Hex 20 Input Registered PAL20R6A
And-Or Invert Gate Array HAL20R6A

20R4 24(28) NS.JS.F.(L),(NL) Quad 20 Input Registered PAL20R4A
And-Or Invert Gate Array HAL20R4A



20/24·Pin PAL/HAL Device

PART NUMBERGENERIC PINS PACKAGE DESCRIPTION
LOGIC STANDARD HIGH SPEED 1/2 POWER 1/4 POWER

Octal 16 Input And-Or PAL 16P8A
*16P8 20 N,J,L,NL Array w/Programmable HAL16P8A

Polarity
Octal 16 Input Registered PAL16RP8A*16RP8 20 N,J,L,NL And-Or Array HAL 16RP8A
w/Programmable Polarity
Hex 16 Input Registered

PAL 16RP6A*16RP6 20 N,J,L,NL And-Or Array
HAL 16RP6Aw/Programmable Polarity

Quad 16 Input Registered PAL 16RP4A
*16RP4 20 N,J,L,NL And-Or Array HAL 16RP4A

w/Programmable Polarity
Deca 20 Input And-Or Array PAL20S10

20S10 24(28) N,J,W,(L),(NL) w/Product Term Sharing HAL20S10
Deca 20 Input Registered

PAL20RS1020RS10 24 (28) N,J,W,(L),(NL) And-Or Array HAL20RS10
w/Product Term Sharing
Octal 20 Input Registered

PAL20RS820RS8 24(28) N,J,W,(L),(NL) And-Or Array
HAL20RS8w/Product Term Sharing

Quad 20 Input Registered PAL20RS420RS4 24(28) N,J,W,(L),(NL) And-Or Array HAL20RS4w/Product Term Sharing
Deca 20 Input Registered PAL20RA1020RA10 24(28) N,J,W,(L),(NL) Asynchronous And-Or Array HAL20RA10
16 Output, 32 Input

PAL32R1632R16 40(44) N,J,(L),(NL) Registered And-Or
HAL32R16Gate Array

32 Output, 64 Input PAL64R3264R32 84(88) L,(P) Registered And-Or
HAL64R32Gate Array



Absolute Maximum Ratings
Supply Voltage. V CC
Input Voltage .
Off-state output Voltage ..
Storage temperature

Operating Programming
...................•.......... -0.5V to 7.0V -0.5V to 12.0V

... -1.5V to 5.5V . . . . . . . . •. . . . . . •. . . .. . . -1.0 to 22V
5.5V... .. 12.0V

.. ..•............ -65° to +150°C

t I/O pin leakage is the worst case of 10ZX or IIX e.g., IlL and 10ZH'

• These are absolute voltages with respect to the ground pin on the device and includes all overshoots due to system and/or
tester noise. Do not attempt to test these values without suitable equipment.









20RA10

Pi: vcc

10 00

11 01

12 02

13 03

14 04

15 05

16 06

17 07

18 08

19 09

GNO Of



Monolithic mMemories



Standard PAL/HAL Device Serl•• 20
10H8,12H6,14H4,16H2,16C1,10L8,12L6,14LA,16L2

SYMBOL PARAMETER
MILITARY COMMERCIAL

UNIT
MIN TYP MAX MIN TYP MAX

Vcc Supply voltage 4.5 5 5.5 4.75 5 5.25 V

TA Operating free-air temperature -55 0 75 ·C

TC Operating case temperature 125 ·C

SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VIL * Low-level input voltage 08 V

VIH * High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

IlL Low-level input current VCC = MAX VI = O.4V -0.02 -0.25 mA

IIH High-level input current VCC = MAX VI = 2.4V 25 IJA

II Maximum input current VCC = MAX VI = 5.5V 1 mA

MIL tOL = &nA
VOL Low-level output voltage

VCC = MIN 0.3 0.5 V

COM tOL = &nA

MIL 10H = -2mA

VOH High-level output voltage VCC = MIN 2.4 2.8 V
COM IOH = -3.2mA

10S Output short~ircuit current * * VCC = 5V Vo = OV -30 -70 -130 mA

ICC Supply current VCC = MAX 55 90 mA

SYMBOL PARAMETER
TEST MILITARY COMMERCIAL

CONDITIONS MIN TYP MAX MIN TYP MAX
UNIT

Input or feed- I Except 16C1 R1 = 560fl 25 45 25 35
tpD

back to output I 16C1 R2 = 1.1kfl ns
25 . 45 25 40



Fut Serl••24A
20L8A,20R8A,20R8A,20R4A

SYMBOL PARAMETER
MILITARY COMMERCIAL

UNIT
MIN TYP MAX MIN TYP MAX

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

Low 20 7 15 7
tw Width of clock ns

High 20 7 15 7

tsu
Set up time from

20R8A 20R6A 2OR4A 30 15 25 15
input or feedback to clock

ns

th Hold time 0 -10 0 -10 ns

TA Operating free-air temperature -55 0 75 ·C

TC Operating case temperature 125 ·C

SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VIL * Low-level input voltage 0.8 V

VIH * High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

IlL Low-level input current t VCC = MAX VI = 0.4V -{).02 -0.25 mA

IIH High-level input current t VCC = MAX VI = 2.4V 25 pA

II Maximum input current VCC = MAX VI = 5.5V 1 mA

MIL IOL = 12mA
VOL Low-level output voltage

VCC = MIN 0.3 0.5 V

COM IOL = 24mA

MIL 'OH = -2mA

VOH High-level output voltage VCC = MIN 24 2.8 V
COM IOH = -3.2mA

IOZL Vo = 0.4V -100 pA

Off-state output current t VCC = MAX

10ZH Va = 2.4V 100 pA

10S Output short-{;ircuit current * * VCC = 5V Va = OV -30 -90 -130 mA

ICC Supply current VCC = MAX 160 210 mA

TEST MILITARY COMMERCIAL
UNITSYMBOL PARAMETER

CONDITIONS MIN TYP MAX MIN TYP MAX

tpo
Input or feed-

20R6A 2OR4A 2OL8A 15 30 15 25 ns
back to output

tCLK Clock to output or feedback 10 20 10 15 ns

tpzx Pin 13 to output enable except 2OL8A 10 25 10 20 ns

tpxz Pin 13 to output disable except 2OL8A R1 = 2000
11 25 11 20 ns

tpzx
Input to

2OR6A 20R4A 20L8A R2 = 3900 10 30 10 25 ns
output enable

tpxz
Input to

2OR6A 2OR4A 2OL8A 13 30 13 25 ns
output disable

fMAX
Maximum

20 40 28.5 40 MHz
frequency 2OR8A 2OR6A 2OR4A



Standard PAL/HAL Device Series24
12L10,14L8,16L6,18L4,20L2,20C1

PARAMETER
MILITARY COMMERCIAL

UNITSYMBOL MIN TYP MAX MIN TYP MAX

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

TA Operating free-air temperature -55 0 75 °c
TC Operating case temperature 125 °c

SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VIL • Low-level input voltage 0.8 V

V'H • High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN I, = -18mA -0.8 -1.5 V

IlL Low-level input current VCC = MAX VI = OAV -0.02 -0.25 mA

IIH High-level input current VCC = MAX VI = 2AV 25 IJA

'I Maximum input current VCC = MAX VI = 5.5V 1 mA

MIL 10L = SmA
VOL Low-level output voltage

VCC = MIN 0.3 0.5 V

COM 'OL = 8mA

MIL 10H = -2mA

VOH High-level output voltage VCC = MIN 2.4 2.8 V
COM 10H = -3.2mA

'OS Output short-circuit current· • VCC = 5V Vo = OV -30 -70 -130 mA

ICC Su pply current VCC = MAX 60 100 mA

PARAMETER
TEST MILITARY COMMERCIAL

UNITSYMBOL
CONDITIONS MIN TYP MAX MIN TYP MAX

R1 = 560n
25 45 25 40tpo Input or feedback to output R2 = 1.1kfl ns



------ . .. .......... ...... ... ...""

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

Low 25 10 25 10
tw Width of clock ns

High 25 10 25 10

Set up time from 16R8 16R6 16R4 45 25 35 25
tsu input or feedback to clock

ns
16X416A4 55 30 45 30

th Hold time 0 -15 0 -15 ns

TA Operating free-air temperature -55 0 75 °c
TC Operating case temperature 125 °c

SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VIL * Low-level input voltage 0.8 V

VIH * High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

IlL Low-level input current t VCC = MAX VI = OAV -0.02 -025 mA

IIH High-level input current t VCC = MAX VI = 2AV 25 IJA

II Maximum input current VCC = MAX VI = 5.5V 1 mA

MIL 10L = 12mA
VOL Low-level output voltage

VCC = MIN 0.3 05 V

COM 10L = 24mA

MIL 10H = -2mA

VOH High-level output voltage VCC = MIN 2.4 2.8 V
COM 10H = -3.2mA

10ZL Va = OAV -100 IJA
Off-state output current t VCC = MAX

10ZH Va = 2AV 100 IJA

10S Output short-circuit current * * VCC = 5V Va = OV -30 -70 -130 mA

16R4 16R6 16R8 16L8 120 180

ICC Supply current VCC= MAX 16X4 160 225 mA

16A4 170 240

SYMBOL PARAMETER
TEST MILITARY COMMERCIAL

UNIT
CONDITIONS MIN TYP MAX MIN TYP MAX

tpD
Input or feed- 16R6 16R4 16L8 25 45 25 35 ns
back to output 16X4 16A4 30 45 30 40 ns

tCLK Clock to output or feedback 15 25 15 25 ns

tpzx Pin 11 to output enable except 16L8 15 25 15 25 ns

tpxz Pin 11 to out out disable except 16L8 R1 = 2000
15 25 15 25 ns

Input to 16R6 16R4 16L8 R2 = 3900 25 45 25 35 ns
tpzx output enable 16X4 16A4 30 45 30 40 ns

Input to 16R6 16R4 16L8 25 45 25 35 ns
tpxz output disable 16X4 16A4 30 45 30 40 ns

fMAX
Maximum 16R8 16R6 16R4 14 25 16 25
frequency 16X4 16A4

MHz
12 22 14 22



StandardPAL/HAL DeviceSerie. 24
20X10,20X8,20X4,20L10

SYMBOL PARAMETER
MILITARY COMMERCIAL

UNIT
MIN TYP MAX MIN TYP MAX

Vcc Supply voltage 4.5 5 5.5 4.75 5 5.25 V

Low 40 20 35 20
tw Width of clock ns

High 30 10 25 10

tsu
Set up time from

60 38 50 38
input or feedback to clock ns

th Hold time 0 -15 0 -15 ns

TA Operating free-air temperature -55 0 75 °c

TC Operating case temperature 125 °c

SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VIL * Low-level input voltage 0.8 V

VIH * High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

IlL Low-level input current t VCC = MAX VI = OAV -0.02 -0.25 mA

IIH High-level input current t VCC = MAX VI = 2.4V 25 IJA

II Maximum input current VCC = MAX VI = 5.5V 1 mA

MIL 10L = 12mA
VOL Low-level output voltage

VCC = MIN 0.3 0.5 V

COM 10L = 24mA

MIL 10H = -2mA

VOH High-level output voltage VCC = MIN 2.4 2.8 V
COM 10H = -3.2mA

lOlL Vo = 0.4V -100 IJA
Off-state output current t VCC = MAX

10lH Vo = 2.4V 100 IJA

'OS Output short-<:ircuit current * * VCC = 5V Vo = OV -30 -70 -130 mA

ICC Supply current VCC = MAX 20X10 20X8 20X4 120 180 mA

ICC Su pply current VCC = MAX 20L10 90 165 mA

SYMBOL PARAMETER
TEST MILITARY COMMERCIAL

UNITCONDITIONS MIN TYP MAX MIN TYP MAX

tpD Input or feedback to output 35 60 35 50 ns

tCLK Clock to output or feedback 20 35 20 30 ns

tpXZ/ZX Pin 13 to output disable/enable except 20L 10 R1 = 2000 20 45 20 35 ns

tpzx Input to output enable except 2OX10 R2 = 3900 35 55 35 45 ns

tpXl Input to output disable except 2OX10 35 55 35 45 ns

fMAX Maximum frequency 10.5 16 12.5 16 MHz



Fast PAL/HAL Device Serle. 20A, 20AP
16L8A, 16R8A, 16R6A, 16R4A, 18P8A, 16RP8A, 16RP6A,16RP4A

SYMBOL PARAMETER
MILITARY COMMERCIAL

UNIT
MIN TVP MAX MIN TVP MAX

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

Low 20 10 15 10
tw Width of clock ns

High 20 10 15 10

tsu
Set up time from 16R8A 16R6A 16R4A 30 15 25 15
input or feedback to clock 16RP8A 16RP6A 16RP4A

ns

th Hold time 0 -10 0 -10 ns

TA Operating free-air temperature -55 0 75 ·C

TC Operating case temperature 125 ·C

SYMBOL PARAMETER I TEST CONDITIONS MIN TVP MAX UNIT

VIL * Low-level input voltage 0.8 V

VIH * High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

IlL Low-level input current t VCC = MAX VI = 0.4V -0.02 -0.25 mA

IIH High-level input current t VCC = MAX VI = 2.4V 25 JJA

II Maximum input current VCC = MAX VI = 5.5V 1 mA

MIL 10L = 12mA
VOL Low-level output voltage

VCC = MIN 0.3 0.5 V

COM 10L = 24mA

MIL 10H = -2mA

VOH High-level output voltage VCC = MIN 2.4 2.8 V
COM 10H = -3.2mA

lOlL Vo = 0.4V -100 JJA
Off-state output current t VCC = MAX

10lH Vo = 2.4V 100 JJA

10S Output short-<:ircuit current * * VCC = 5V Vo = OV -30 -70 -130 mA

ICC Supply current VCC = MAX 120 180 mA

SYMBOL PARAMETER
TEST MILITARY COMMERCIAL

UNIT
CONDITIONS MIN TVP MAX MIN TVP MAX

Input or feed- 16R6A 16R4A 16L8A
tpo 15 30 15 25 ns

back to output 16RP6A 16RP4A 16P8A

tCLK Clock to output or feedback 10 20 10 15 ns

tplX Pin 11 to output enable except 16L8A 16P8A 10 25 10 20 ns

tpXl Pin 11 to output disable except 16L8A 16P8A
R1 = 2000

11 25 11 20 ns

tplX
Input to 16R6A 16R4A 16L8A R2 = 3900 10 30 10 25
output enable

ns
16RP6A 16RP4A 16P8A

tpXl
Input to 16R6A 16R4A 16L8A

13 30 13 25 ns
output disable 16RP6A 16RP4A 16P8A

fMAX
Maximum 16R8A 16R6A 16R4A
frequency 16RP8A 16RP6A 16RP4A

20 40 28.5 40 MHz



Helf-Power Serl•• 20-2
10HS-2, 12H8-2, 14H4-2, 18H2-2, 18C1-2, 10LS-2, 12L8-2, 14L4-2, 18L2-2

SYMBOL PARAMETER
MILITARY COMMERCIAL

UNIT
MIN TYP MAX MIN TYP MAX

Vcc Supply voltage 4.5 5 5.5 4.75 5 5.25 V

TA Operating free-air temperature -55 125 0 75 ·C

SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VIL * Low-level input voltage 0.8 V

VIH * High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

IlL Low-level input current VCC = MAX VI = O.4V -{J.02 -<l.25 mA

IIH High-level input current VCC = MAX VI = 2.4V 25 JlA

II Maximum input current VCC = MAX VI = 5.5V 1 mA

MIL 10L = 4mA
VOL Low-level output voltage

VCC = MIN 0.3 0.5 V

COM 10L = 4mA

MIL 10H = -lmA

VOH High-level output voltage VCC = MIN 2.4 2.8 V
COM 10H = -lmA

10S Output short-circuit current * * VCC = 5V Vo = OV -30 -70 -130 mA

ICC Supply current VCC = MAX 30 45 mA

SYMBOL PARAMETER
MILITARY COMMERCIAL

TEST UNIT
MIN TYP MAX MIN TYP MAX

R1 = 1.12kO
tpD Input or feedback to output 45 80 45 60 ns

R2 = 2.2kO



Half-Power Serie. 20A-2
18L8A-2, 18R8A-2, 18R8A-2, 18R4A-2

SYMBOL PARAMETER
MILITARY COMMERCIAL

UNIT
MIN TYP MAX MIN TYP MAX

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

Low 25 10 25 10
tw Width of clock ns

High 25 10 25 10

tsu
Set up time from

16R6A-2 16R4A-2 16R8A-2 50 25 35 25 ns
input or feedback to clock

th Hold time 0 -15 0 -15 ns

TA Operating free-air temperature -55 125 0 75 ·C

SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VIL * Low-level input voltage 0.8 V

VIH * High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

IlL Low-level input current t VCC = MAX VI = O.4V -{).02 -0.25 mA

IIH High-level input current t VCC = MAX VI = 2.4V 25 IlA

II Maximum onput current VCC = MAX VI = 5.5V 1 mA

MIL 10L = 12mA
VOL Low-level output voltage

VCC = MIN 0.3 0.5 V

COM 10L = 24mA

MIL 10H = -2mA

VOH High-level output voltage VCC = MIN 2.4 2.8 V
COM 'OH = -3.2mA

'OZL Vo = 0.4V -100 IlA
Off-state output current t VCC = MAX

10ZH Vo = 2.4V 100 IlA

'OS Output shorH::ircuit current * * VCC = 5V Vo = OV -30 -70 -130 mA

ICC Supply current VCC = MAX 60 90 mA

TEST MILITARY COMMERCIAL
UNITSYMBOL PARAMETER

CONDITIONS MIN TYP MAX MIN TYP MAX

tpo
In put or feed- 16LBA-2 '16R6A-2 16R4A-2 25 50 25 35 ns
back to output

tCLK Clock to output or feedback 15 25 15 25 ns

tpXZlZX Pin 11 to output disable/enable except 16L8A-2 R1 = 2000 15 25 15 25 ns

tpzx
Input to

16LBA-2 16R6A-2 16R4A-2 R2 = 3900 25 45 25 35 ns
output enable

tpxz
Input to

16RBA-2' 16R6A-2 16R4A-2 25 45 25 35 ns
output disable

fMAX
Maximum

16RBA-2 16R6A-2 16R4A-2 14 25 16 25 MHz
frequency



Quarter·Power Serie. 20A·4
16L8A·4, 16R8A·4, 16R6A·4, 16R4A·4

SYMBOL PARAMETER
MILITARY COMMERCIAL

UNIT
MIN TYP MAX MIN TYP MAX

Vcc Supply voltage 4.5 5 5.5 4.75 5 5.25 V

Width of clock
.1 Low 40 20 30 20

tw 16R8A-4 16R6A-4 16R4A-4
1

High ns
40 20 30 20

tsu
Set up time from

16R8A-4 16R6A-4 16R4A-4 90 45 60 45
input or feedback to clock

ns

th Hold time 0 -15 0 -15 ns

TA Operating free-air temperature -55 125 0 75 ·C

SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VIL " Low-level input voltage 08 V

VIH " High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

IlL Low-level input current t VCC = MAX VI = O.4V -0.02 -0.25 mA

IIH High-level input current t VCC = MAX VI = 2.4V 25 pA

II Maximum input current VCC = MAX VI = 5.5V 1 mA

MIL 10L = 4mA
VOL Low-level output voltage

VCC = MIN 0.3 0.5 V

COM 10L = BmA

MIL 10H = -1mA

VOH High-level output voltage VCC = MIN 2.4 2.8 V
COM 10H =-1mA

10ZL Vo = 0.4V -100 pA

Off-state output currentt VCC = MAX

10ZH Vo = 2.4V 100 pA

10S Output short-circuit current"" VCC = 5V Vo = OV -30 -70 -130 mA

'CC Supply current VCC = MAX 16R4A-4 16R6A-4 16R8A-4 16L8A-4 30 50 mA

PARAMETER
MILITARY COMMERCIAL

SYMBOL TEST UNIT
MIN TYP MAX MIN TYP MAX

Input or feed-
35 55tpo 16R6A-4 16R4A-4 16L8A-4 35 75 ns

back to output

tCLK Clock to output or feedback 20 45 20 35 ns

tpXZlZX Pin 11 tooutputdisablelenable-except 16L8A-4 R1=800!1 15 40 15 30 ns

Input to
R2 = 1.56k!1 30tpzx 16R6A-4 16R4A-4 16L8A-4 30 65 50 ns

output enable

tpxz
Input to

16R6A-4 16R4A-4 16L8A-4 30 65 30 50 ns
output disable

Maximum
fMAX 16R8A-4 16R6A-4 16R4A-4 8 18 ,.,

18 MHz
frequency



MILITARY COMMERCIAL
UNITSYMBOL PARAMETER MIN TYP MAX MIN TYP MAX

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

tw Width of clock 25 13 20 13 ns

twp Preload pulse width 45 15 35 15 ns

tsu setup time for input or feedback to clock 25 10 20 10 ns

tsup Preload setup time 30 5 25 5 ns

I Polarity fuse intact 10 -2 10 -2
th Hold time I

ns
Polarity fuse blown 0 -6 0 -6

thp Preload hold time 30 5 25 5 ns

TA Operating free-air temperature -55 0 75 °c
TC Operating case temperature 125 °c

SYMBOL PARAMETER TEST CONDITION MIN TYP MAX UNIT

Vil * low-level input voltage 0.8 V

VIH * High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

III low-level input current VCC = MAX VI = 0.4 V -0.02 -0.25 mA

IIH High-level input current VCC = MAX VI = 2.4 V 25 J.LA

II Maximum input current VCC = MAX VI = 5.5 V 1 mA

Val low-level output voltage VCC = MIN 10l = 8mA 0.3 0.5 V

VOH High-level output voltage VCC = MIN 10H: Mil-2 mA Com-3.2 mA 2.4 2.8 V

10Z Off-state output current VCC = MAX Va = 2.4 VNO = 0.4 V -100 100 J.LA

10S Output short-circuit current** VCC = 5V Va = 0 V -30 -70 -130 mA

ICC Supply current VCC = MAX 155 200 mA

SYMBOL PARAMETER TEST MILITARY COMMERCIAL UNITCONDITIONS MIN TYP MAX MIN TYP MAX

I Polarity fuse intact 20 35 20 30
tpD Input or feedback to output I ns

Polarity fuse blown 25 40 25 35

tClK Clock to output or feedback 10 17 35 10 17 30 ns

ts Input to asynchronous set 22 40 22 35 ns

tR Input to asynchronous reset 27 45 27 40 ns

tpzx Pin 13 to output enable
R1 = 5600

10 25 10 20 ns

tpxz Pin 13 to output disable
R2 = 1.1 KO

10 25 10 20 ns

tpzx Input to output enable 18 35 18 30 ns

tpxz Input to output disable 15 35 15 30 ns

fMAX Maximum frequency 16 35 20 35 MHz



MILITARY COMMERCIAL
UNITSYMBOL PARAMETER MIN TYP MAX MIN TYP MAX

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

Low 20 10 15 10
tw Width of clock ns

High 20 10 15 10

Setup time from input 20RS10
tsu or feedback to clock 20RS8 40 25 35 25 ns

20RS4

th Hold time 0 -10 0 -10 ns

TA Operating free-air temperature -55 0 75 °c
TC Operating case temperature 125 °c

SYMBOL PARAMETER TEST CONDITION MIN TYP MAX UNIT

VIL* Low-level input voltage 0.8 V

VIH* High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN 'I = -18mA -0.8 -1.5 V

IlL Low-level input current t VCC = MAX VI = 0.4 V -0.02 -0.25 mA

IIH High-level input current t VCC = MAX VI = 2.4 V 25 IJA

II Maximum input current VCC = MAX VI = 5.5 V 1 mA

VOL Low-level output voltage VCC = MIN
MIL 10L = 12mA 0.3 0.5 V
COM 10L = 24mA

MIL 10H = -2mA
VOH High-level output voltage VCC = MIN 2.4 2.8 V

COM 10H = -3.2mA

lOlL Off-state output currentt Vo = 0.4 V -100 IJA
10lH

VCC = MAX
VOL = 2.4 mA 100

10S Output short-circuit current * * VCC = 5V Vo =OV -30 -70 -130 mA

ICC Supply current VCC = MAX 175 240 mA

SYMBOL PARAMETER TEST MILITARY COMMERCIAL UNITCONDITIONS MIN TYP MAX MIN TYP MAX

20S10, 20RS8, 20RS4 Polarity fuse intact 25 40 25 35
tpo Input or feedback to ns

output Polarity fuse blown 30 45 30 40

tCLK Clock to output or feedback 12 20 12 17 ns

tplX Pin 13 to output enable except 20S10 10 25 10 20 ns

tpXl Pin 13 to output disable except 20S10
R1 = 200!1 11 25 11 20 ns

tplX
Input to 20S10,20RS8, R2 = 390 K!1 25 35 25 35 nsoutput enable 20RS4

tpXl
Input to 20S10,20RS8 13 25 13 25 nsoutput disable 20RP4

fMAX
20RS10,20RS8,20RS4 18 28 20 28 MHzMaximum frequency



MILITARY COMMERCIAL
SYMBOL PARAMETER MIN TYP MAX MIN TYP MAX UNIT

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

I Low 25 20
tw Width of clock I

ns
High 25 20

twp Preload pulse width 45 35 ns

I Polarity fuse intact 50 40
tsu Setup time for input to clock I ns

Polarity fuse blown 50 40

tsup Preload setup time 30 25 ns

th Hold time 0 -10 0 -10 ns

thp Preload hold time 10 5 ns

TA Operating free-air temperature -55 0 75 °c
TC Operating case temperature 125 °c

SYMBOL PARAMETER TEST CONDITION MIN TYP MAX UNIT

VIL* Low-level input voltage 0.8 V

VIH* High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18 mA -0.8 -1.5 V

IlL Low-level input current VCC= MAX VI = 0.4 V -0.02 -0.25 mA

IIH High-level input current VCC = MAX VI = 2.4 V 25 p.A

II Maximum input current VCC = MAX VI = 5.5 V 1 mA

MIL 10L = 8mA
VOL Low-level output voltage VCC= MIN 0.3 0.5 V

COM 10L = 8mA

MIL 10H = -2mA
VOH High-level output voltage VCC = MIN 2.4 2.8 V

COM 10H = -3.2 mA

10ZL Vo =O.4V -100 p.A

10ZH
Off-state output current VCC = MAX

Vo =2.4V 100 p.A

10S Output short-circuit current* * VCC= MAX Vo =OV -30 -70 -130 mA

Ice Supply current VCC= MAX 200 280 mA

SYMBOL PARAMETER TEST MILITARY COMMERCIAL UNITCONDITIONS MIN TYP MAX MIN TYP MAX

tpD I Polarity fuse intact 50 40
Input to output ns

I Polarity fuse blown 55 45

tCLK Clock to output or feedback 30 25 ns

tpzx Output enable R1 = 560 0
25 20 nsR2=1.1KO

tpxz Output disable 25 20 ns

fMAX Maximum frequency 14 16 MHz



MILITARY COMMERCIAL
UNITSYMBOL PARAMETER MIN TYP MAX MIN TYP MAX

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

Low
tw Width of clock 25 20 ns

High

Polarity fuse intact
40tsu Setup time for input to clock 50 ns

Polarity fuse blown

th Hold time 0 -10 0 -10 ns

TA Operating free-air temperature -55 0 75 °c
TC Operating case temperature 125 °c

SYMBOL PARAMETER TEST CONDITION MIN TYP MAX UNIT

VIL * Low-level input voltage 0.8 V

V'H* High-level input voltage 2 V

VIC Input clamp voltage VCC = MIN II = -18mA -0.8 -1.5 V

IlL Low-level input current VCC = MAX VI = 0.4 V -0.02 -0.25 mA

IIH High-level input current VCC = MAX VI = 2.4 V 25 JlA

'I Maximum input current VCC = MAX VI = 5.5 V 1 mA

MIL 10L = 8mA
VOL Low-level output voltage VCC = MIN 0.3 0.5 V

COM 10L = 8mA

MIL 'OH = -D.4 mA
VOH High-level output voltage VCC = MIN 2.4 2.8 V

COM 'OH = -D.4 mA

10ZL Vo = 0.4 V -100 JlA

10ZH
Off-state output current VCC = MAX

Vo = 2.4 V 100 JlA

10S Output short-circuit current** VCC = MAX Vo =OV -10 -40 -60 mA

ICC Supply current VCC = MAX 400 640 mA

SYMBOL PARAMETER TEST MILITARY COMMERCIAL UNITCONDITIONS MIN TYP MAX MIN TYP MAX

I Polarity fuse intact 55 50
tpo Input to output I Polarity fuse blown

ns
60 55

tCLK Clock to output or feedback 30 22 ns

tpzx Output enable
R1 = 56011

35 30 ns

~l5Z Output disable
R2=1.1Kll

35 30 ns

tpRH Preset to output 40 35 ns

fMAX Maximum frequency 12.5 16 20 MHz



SYMBOL
MILITARY COMMERCIAL

PARAMETER MIN TYP MAX MIN TYP MAX UNIT

twp Preload pulse width 45 35 ns

tsup Preload setup time 60 50 ns

thp Preload hold time 10 5 ns

tpRW Preset pulse width 30 25 ns

tpRR Preset recovery time 40 35 ns

Monolithic W Menrories



I

_

______ .l-tpD •.•..~tP-RH--------~~':.~-- •..•.•
COMBINATORIAL _

OUTPUTS ~--------------~~~ ~---

INPUTSI/O
REGISTERED

FEEDBACK

1-

Output Register PRELOAD Series 20AP
The PRELOAD function allows the register to be loaded from
data placed on the output pins. This feature aids functional
testing which would otherwise require a state sequencer for test
coverage. The procedure for PRELOAD is as follows:

1 Raise VCC to 4.5 V.

2 Disable output registers by selting pin 11 to VIH'

3 Apply VILIVIH to all output registers.

4 Pulse pin 8 to Vp' Then back to 0 V.

5 Remove VILIVIH from all output registers.

6 Lower pin 11 to VIL to enable the output registers.

7 Verify for VOLIVOH at all output registers.

Output Register PRELOAD Series 24RS
The PRELOAD function allows the register to be loaded from
data placed on the output pins. This feature aids functional test-
ing which would otherwise require a state sequencer for test
coverage. The procedure for PRELOAD is as follows:

1 Raise VCC to 4.5 V.

2 Disable output registers by selting pin 13 to VIH'

3 Apply VILIVIH to all vutput registers.

4 Pulse pin 10 to Vp' Then back to 0 V.

5 Remove VILIVIH from all output registers.

6 Lower pin 13 to VIL to enable the output registers.

7 Verify for VOL IV OH at all output registers.

-=-_-_"k
v
p
l--f-tD I--r-tD



I ..~..
D "I

1 ....
• 18

•

3 ....
" ~ ""l 11
11 ~

4 ..

" ~ 16
2.

5 ~..
31 15
lJ

6--t ..
40 14

" ~

) ..
.. 13..

8 •...
.. 11
51

, ..
11~•.. ...•



1
~•..

!... ~ .. 19•.. .•

• ~• II
10 J
11

J
~•..

" 17

"

• ~

" 16
2S

5 ..
Jl 15
Jl

6
~

4Q ~ 14

" ~

1
~.,...

.. ... "" 13
51 "1.-/
51 ~ ,

• ~
C 11..

!..-- ~
11•.. ..•



1
..
•..

2 ••••
----t •..

3 •... ..• 19•.. ..•

4 •... ..• 18•.. ..•
" ~ ·11 " 11,. ./
"

5 •...
•..

" """ "16 ./
lJ ·
32

"3l 15

" ./
35 ·

6 •...
•..

oo ~ ·" " 14

" ../
43

1 •••• 13----t •..

8 ... 12•..

• •... ..•
"•.. ..•



PAL/HAL Device_ Logic Diagram

1 ~ I•..

2 ~
"C•.. ..•

J
•..

18•.. ..•

4
•..

17•.. ...•

""" ""11 16

" ./
"JO
J1

5
•..

- •..
"J3
"l5 "" 15
16 ./
"]I
"

6 •.. ..• 14•.. ..•

1
•.. ..• 1J•.. ..•

• •.. ~
"•.. ...•

9 ~ ~
11•.. ...•



.!....-.;

~ 19.. ..•

3 ..• 18.. ..•

4 ~ 17..•

"""21
21

"lO
]I ,.

5
..

:I.. 15

II
II

"l5
"37

"39

• ~ ,... ~

7 ~ '3
~

8
.. ~ 12.. ..•

9
~ ~ 11.. ..•



PAL/HAL Device Logic Diagram

1 ~
•...

- ",
1

2

•...

• 11

•

J ~•.

" 17
11 ~

• ~
•..

14 ""
5 ~

•..

" 15
3l ~

6

" 14
41 ~

7

.. 13.. ~

,

" 12

"

• 11..•



1

2
..• ,... ~

I

I '-• 18
10 .or
11

3
....

" 17
11 ~

• ..
24 ,.
25 ~

5
•...

II '5
II

• .,

40 ~- ,...
2--...t..

..•• '3
SO ./-
" ,

8
...•

12

~

• •... ..•
11

~ ..•



PAL/HAL Device Logic Diagram

012 J • § Ii J • !lDll 121J141§ 1617 II lS 20212223 242$2621 2IU3031,

lI, >-- -......1 "·5 J V•)
2 L .

•.. ..•
• ]•
"11 "" 18
1Z J V13..
15

3 L -.. ..•
" l11

"" "' 17

" Y"""
• L -•.. ..•

" 115

"Z7 '" 16

" V"""
s ~

•.. ..•
12

~

II

"15 15

"II
""

6 L -•.. .... >-J.,
"" 14......
"

1 ~
•... ..•..

J..
so

" "" 13

" J V"..
55

, L -.. ..•
56

157

".. "" 12

"" V
""

!.-.- L - 11..•



1 •.....
V

"12] 4 ~ 6 1 191011 121lU 1~ 161111192021122] 24252&21 21293031

0

~

,
2
l "·••,

3--1":>
...•

, - J.•
"II " "" •....
"..
"

J ... ...•
t---~

"" =:JL.." .....••.
""" ./

~

V
"22
2l

• ..
"

~" -r;;-;;J.-" ""21

~

•....
"30
Jl

\
..•

J2

~
II

" ""

~

JO ./ •....
JJ
JO

", .. ...•
~ •.. ...•

"..
~" .....••.

u

~

.. ./ •........
"

2
.. ...•
•.. ...•.. J...

SO

" .....••. 13

" ./ VSl..
••. .. ..~ ...•
Sf J."Sf
Sf 12
II ./ V""OJ

!.. .. ..
~•.. '""



1 ~
•..

I ~
•..

J •.. ~ 19•.. ..•

• •.. - 18•.. "'l

16 - ·
11 " 17
11 /'
"

5 •..
•..

" - ·
" " "" --L./
" ,

31

"]] 15

" /'
" ,

• ~
•..

.. - ·41 " "41 /'
"

, ~ ~ 13•.. "'l .

, - 12•..

, •.. - 17

"'l



PAL/HAL Device Logic Diagram

1 ~..
~= 19

,

3 ~ ..•
18.. ,

• ~
17.. ~

"15

" """11 16
11 ./
"JO

"
5 ~..

"II
" ""'l5 15

" ..r
11
II

"

~ •.. ~ ,... ...•

7
•.. ~

13.. ...•

8
•.. .. 12.. ...•

9
•..

11

~



1
•.....
V-

0123 "!l61 • glOll 121314U 16111119 20212213 242!11621 211930]1

,

~
I
2 "'" 19l· J

~
·•1

2 •.. ~~
I

~
9

10 "'"

~

"12
Il
14

"
J •.. ...•
----t

16
11 h18 " 1719
20

~

V-
21

"2l

~ ~~.. ...•
24

~
"26 ...•..
21

" F

~

29

"31

5
.. ~

.> ~
J2

~
lJ
J4 ...•..

" F

~

"])
"39

• .. ...•.. ~..
41

~42 •...•..
4l 14.. J

~

V
45..
41

1 ••• ~'------I.. ...•....
~

.. •...•..

~

"""....
B •.. ...•

....•..
"

~
"

~

59
...••.

•• ./

"62
6l

9
~ .A 17.. ~ ""'f



1
•.....
•......

0'13 4 ~ & 1 "1011 12 lJ 14 1~ 15111119 20212223 24 2~ 2621 212930Jl,

J1,
1 J- ".,
•
1 ,

1

1 •....
iC. t---

I

~
,
" >---' "' r- 1811

0 a" >-- -/ •.....
1l

•.......•..
~'1"

3 •.. ...•

"
~

"11
"'""

~

" ./
"'"""2l

• ~•.
"

~
"" ,
" 0 a
" 9 •.....
"lO
", •..
12 l--
II l--

~" l-- -," 0 a
16 r9

•.....
"II
"•.. ..•6 •.. ..•
"

~
..•• "'""

~

.. ./
"'"....

"
1 ~ ...•
'-----I ~..

~
..•.

"""

" 0 a" ./

~

"'""..
", .. ...~ ~
" J."" "" ,
" ./ •......
"02
OJ•.. ~ ...A.......!.!,

...• ~



I
•..•..
V"

G 1 2 ] 4 ~ 6 I I 9 1011 12 1J 14 I~ 161111 \9 2021 22 2J 24 2~ 26 21 21293031

0

1 "' J.1
l "4

/~
,,

2 ••
,

•

~

•
"11 11
11
1l..

l ••. ""--I•..
"11 ~D-~s11

" 11
10
11
11

• 13

T

L ~~
""

~r>-" rJ11

~

11 16

" V"
30 ./
1I,

1m~
11 ~
II

~~n-" rJ"

~

]I 15
11 r-.. ••.....
JI / ,-
II -

6

!:
.....,

"..

~D-U]"" rJ..
""•• V"

"
,
!:
L ..

"' J••
"" 13

"
/~"..

!- .. "
"

"' J""" 12••" ~~"
9 •.. " ---<f-!!

"'"



PAL/HAL Device Logic ~i8gr8m

1

'123 4'" 111'1' 111314'$ 1'111'1' Dl1un NU212} 8D.)1

I ")JZ,
"•

f
0,

2 ~ 1 ~
•.. ,,

"'l11
11 II
1Z F:Ju..

~ ••,
•..

11 ~D-II =01~11
11

ZO
Z1
Zl
ZZ•

T

tt:t~
••
" JD-••

~
" M21
21

"11

5

l •.••••••• Zl )D-ZZ••
~" M" "" v""-

-• r
f ~ .. )D-~••••••

~
••
'0••.,

1
::

T -- .. ,].,
II

" 13

"
~

"54

~ II• •..
II

"

~~

II
II 12••11
IZ· ~ " ---<P- •.. .....•



0' 23 4567 891011 12131415 16171819 20212223 24252627 28293031,
1I

2
3 """• F~D 19
5 •.....
6
7

2 ~ ~
~ ~

8

1,
1D
11 ~.12 18
13 F·iJD" •.....
15 -

3
,

18

117
18

"20 F~D 17

"" •.....
23 -

4

" 125

"21 ...••..
28 ./ :t1U 16

"30 •....
31

5 ~
~ ,

32

133
34
35 ...••..
38 ./~D 15
31 •.....
38

"
6 ~

~
•• 1""43 ...••..•• ./ :t1U 14
45•• ~
41

7
~

48

1"50
51· ...••..

" ./~D 13
53

" ~
55

8 •• ~
,

•• 151

"" ...••..
50 ./ :t1U 12
81
82 ~
63

9 ~ 11
,



I ••••..•.... 0123 4511 .11011 12131415 1117111120212223 24ZSZ8Z1 28293031

0
1 u~,
3 \9• ., tL>-5•1

2 ••••. ..•
•• -;J.10

11

U \8
" -t1L>-13 •...
14
15

3'"

"11

~"" ., tL>-U 1720

" •..n
23

4 ..•

""" ....••..
~21

U \6" ./ -t1L>-'" •....,
31

5 ••• ..•
32
33
34

~_ 15
,.

U30 ., tL>-31 •..•.
30
31

6 ...
40
41

~" -.......
43

U \4•• tL>-45 ..••41

1

••••
~

50

U" ./ tL>- \3"53 ..
54
56

8 ~

50
51

~-
50

:> ~~tU" \2.,
" •...
"03

9 .A-.. \I
....••



' •.....•.... 0123 4511 .81011 12131415 11171'18 20212223 24252821 21283031

0 1,,, -- Ii• J±Jl..)5 ••••

r
,
7 -

2 •••••

,
• n~'0

11 I-:tJL>- 1811
13

"15

3 ~ ~

"17

~" ...•••. n" 17
10 ./~L.:>-- ~II
II

"
• ~

"15

" ~7D-n~17 16

"" •..•..
3D

"
5 ~ ~

3'
--l

33

~34 ...•••.
35 ../~L>-fi 15
II
37 •..•..
II
59

6 ~ ~

••41

~" ")-~L>-fi43 I••••• ~••47

7

••••50 ---:l" --rtJ~a 1351
53 •..•..
54
55

8 ~

56 157
56
50
OJ I±JD 12

" -yo 1"13 -
i •• ~ A 11

~

Monolithic mMemories



1 h.•.... 0123 4511 "1011 12131415 11171118 :zD21Z223 24252U7 28213031

0 J1
2
3 ...••.• j~l...) 19
5• V- I7 -

2 h.--

~
• 1,

10
11 ...••.
12 ~~l...) 1813

" loo'" 1IS -
3 •. ~

~

"17

" ...•..... --.:l" U20 ~L>- 17
21 -yo-
22
23

4 •. ~

"2S

" ...... -:J27

U" J~L>- 16

" V30
31

5 •• ~..
32
33
34

U~3S 1530 r~L>-37 yv-
31
30

6 ~..
••"" r~~u-----;]43 14•••• •....••41

1 ~

•• 1••so
51
52 ~~l..) 13
53
54 •... I55 -

8 ~

56

157
56

" ......
so T~l.) 12

"" •...
1

33 -
9 ~ ~ A.- Il

~ 'f"



1 .....,...
I I

I· ~ - 23, ~ -
2 •......

~

· - 22· --u-----L-o'

3

"
~ - 21

" ""1.j""-

4

.. ~ - 20

" -tJ--L

5

" ~--r 19

" ~ -
6 ~

.. ~ 18.. ..-
7

.. ~ - 17.. -t:5-L

8 ~

50 ~ - 16

" ~ -
9

.. ~ - 15
is -tJ-L.

10

" - - 14

"
-o---L./

11 ~ 13



,
"""'-

"""'-
..• 232

Vb

. ....n---I
22.

./""" ~ .
3 ~

r-. _
21.. -o--L.

"
• ~

" -n- 20

" -
5

r-. _ ,.
n '.,--n ~ -

6

- ,...
/'.. -

7

..n- 17.. -Q---L...r-..
• ~

r""L_ '6.. 1-( , ./
" ~ -

•
.. -n---I

15" 'J.. -o---r"

..•
"'0

"
..• 13



_1 •....

2
~

~ 23

3 22

" :R--'
" 21

"" '-' ,
4 ">

" - .
"

--H..J-.....
20

"" -LJ-1
5

Jl -,.. 19
J3 '-'

6 ,
.. - - 18

"
..... ~
LJ 0.-

7 ,
.. -.. 17

" j--L./
" '-'

8 :>

so ...T""".-...J

" 16.. B=1"

9 15

10 ~ 14

11 ~ 13
:>



1 .1"'so I
I

2
~

3 23
::lit~

,

~::lIt 22

~::lIt
21

~..
""

•....
20

"" -"
6 ~

Jl ~
" 19

" -Dr".. ~.. 18

" I-< -" •...•. .
7 ~

.. -.. •....
" 17

" -""
~::lIt

16

9 15

~::lIt
14

11 13

~



1 •••••
I

I
----t~

~
23

3 22
~

4 ~ 21
So

5 20

"",.
" 19

" -")I
"

6

..
"" ~
" 18.. -"..
"

7 •.. ... 17
~

8 ~ 16

9 ... 15

10 ... 14---t~

11 ~ 13

I
,



1 •••......

2 .....,... 23
~

3 . 22

4 21..

5 20

""" I>-"""""
6 ~ 19---l:l: 18-..

"" >-"......
"

7 17..•

8 16

9 ~ ~ 15

10 -~ 14

11 13~



• 113 • ~ 5 I 1'1011 11 1) U 1~ 151/11'. " 11 n 1) l' 1~ 15 11 JlltJ']l II lJ :w J~ 15J/11J1l

· 1""\.-4- tJ. 23, ~./ -, ~ ......
~

· I-<'~· 22
""

T •••..

~~

"
•.....•

" ~ N. 21
" •.•..
" T

4

"
•....•

" tJ. 20

" •.•..
" ........,. ..

5

" ..J..
" 19

" ""J V
" ........,. ..

6
r

.. •....•
" rJ.. 18

" L •.•..
" ........,.--

7
~

.. tJ... ~::r~ 17•.
V

" ~ .
8 -

..
" tJ. 16

" •..
" -

9
~

.. ~
" I-< I tJ. 15..

V" '-...T'-
10 -~

" tJ." 14
" •..• "1 •.•..
" ~ .

11 13
r

I
~

,



01 13 4511 11'011 12131415 11111111 NIl nn 14n2l21 21 211JlI 31 3233305 363131» I-C'r ...•
~ -....•

I ,.l,
"" """ ./..
"•.. ....•
.> <.•.." ....•

" tl.
"" """ ./
n
n.. ....•
:> <-

r"
....•

" rJ..
" """ ./
"..

•..." ....•
2 <-•.." ~
" rJ..~
" " 1

" ./
J7

"•..." ....•
~ <.

r ....•

"" ,.l
Q

"" I..
"..

•..." ....•
1 :> .•.•..•...... r-l•• "" 1

" ./
"~

•• 50 ....•
.> <-

" rl""".,
" --/
".." ....•
~ <.

r ~ ....•.. tl.••••
" "'"

•• 1

•• ./

"•.. "
"> <. 1

•... :
.z <

r ....•



. " 3 4 ~ • 1 • 'lOll 12131415 1'171'11 1021 n13 24n2l2J 212131131 32333435 .373131

~

~
<...•.

;-;;-~"" "" ./
"" ~IJ"•.. ....•
> <.~ ,
""

~
" -" >-- "" D Q-
"

./

"
>--'

" ......., ~il•.. ..•
~ <..~
"

~
~

~
~

" ~
" D Q,--
"~~

~~.." .....
~ <.•.. ,~
33

~
~ ~ ~~ "31

D QI--
31
31

~~•.." ...•
~ <..~.,
"

~
" '" ~
(l D QI--.. ./....

~~.." ....••
.2 <Ci...•.. ....

~
" " r---"" ./ D Q-

"..
~l•.." ..•

~ <Ci...•..
""

~
" " .....-"'" ../ D Qi--

""•• OJ ..• ~h~ <..~
~

•• ~"•• ./ D Qi--
••
"•.." ~ I> a 11> ~ "--

~ ....•
1 L So..•.. ...•

o It) 45' , ., 1011 1213.415 16Utll' ll:Ill nn 14ni't11 1121)0)1 323330135 3lI31J1311 -<t-



, , " , 1'1 I , . , , .
".. ..., ....••.., .> <... ,
"" ;-;;~~" ---1 ~"1O ./II

11
n ~il•.. ..•.> ~•.." ~
" ~

~:
" ...••. -II

" ../ D 0-

"" ~l•.." ..•
5 ~ <....~

"
~l

34
"'" -" DQ-30 J

"30

~l"•... .....
~ ~- ,
C

"
~l

" " -".. -/ D 0-....
~l•... " ....•

~ "'lio.... ....
~I

•• " -51

" D 0-

"50

~l•..." .....
> <.- ""

~l

50 "'" -50

" D O-
Il

"•..." ..• > Q l~ < -
..
II

~

II

" ,
"••
"11•...

0 .>:.. ~
I L < .,- .,

l<t-'a 123 • ~ I 7 .81011 11131415 18111118 1021 un I. Z5 le21 1828)03' 32333435 363731:'



0 I! , 45 e 7 • '1011 If131.15 11171111 2021 nn Ur5Zl127 21283031 32333435 .3131.

~

...•
<

• b-d10

"II
"..
"•... ...•
> <I--~
" :tJ"""!O
II

""•...
~.. -"" ~f-i>-" """

"" ./
!O

" ~~.." ...•
.> <~ ..
"l3

~
" r--
" '" o Of--
" _./
11
31

~~"•... ..•
~ ~
""

~
" "

r--
" o Of--
" ./
".. ~il.." A
.2 .•..•...

~ ....
~

" """ r--
"" ./ o Of-
"" ~h•..." A

~ <~ -
"

CiJ""50

" 1

""•..."
~~ -..
Ii

~~
Ii

"•• 1••!O

<~
.."
~

~ ..•
~ < I...•

0123 45' 1 • '1011 12131415 '117111' 2llll nn Z4252l1l1 212113031 32 33 3435 383131J11
1



.. ,.,.',_, 'i-." .
I--

-..
.:: ~

. .:: -
-



1 •.•....
~

• I 1 J . ~, , ., 'I" UlJ 1. IS ,. 11 II It nZI n II 1.1'1' U 1. n JI JI J1)) ~ n )611).)'. ~
, J 23, ~Vl,

~ .....,.. ~-
~~

,
:B=LOD- 22..

"
3

.. ~D-
~

--;l
" 21.. :::: ~
" ~ -

4

" ~ - IJ" ~D-
~

20.. V-

"
5

" ~D-
~

-;:Lu 19

" V-

"
6

.. ~D-
~

-;:L" 18.. V-.,
7

.. ~~D-
~

--;l.. 17.. V-

"
-.K..J

8

" ~~D-
~

I;J.
" 16

" ~- V-

" ~
9

.. ==9D-~ R" 15.. :K:1 - V-

" ~ Q
10

"
~

"
..K-L. ...J..

14
" ""1--<1..-./ V-

" ~

~:> .A 13....•



1 •....V-
I 121 4' 5' n Ill( l~ "Hili' lOZI n u 24 nllll 11211)0)1 1213)olH l'lllllll., "ll· ~

, --K.~ ...l
Z3

I / V- 1, ~ .
L.J"s-

10""-

· ~ ...l· 22
" ~V-I"

3
~
" ~
" ~ tJ. 21
""

•...

I4

.. IDD-~3" 20..
"

5

" ~D- -;Ln

~

19.. •...
" ~ -

6

.. ~D- -;.:L
"

~

18.. •...
"

--K-J

7

..
~[>~

~.... •...
"

8

.. ~
"

""\.--.J.- tJ. 16,. --K. •... ,
"

9

.. tJ." 15.. ....1" ~ .
10

"
~

" ~ tJ. 14..
""1

.. ~
11 .A 13So.t-------'

"I



I ••••.•.. , J • 7 • II 12 15 I' II ZO 2324 11 18 313l 35 3ei 31, 1I
)-J I rT1 23

7
Ir-r •...~

~ ~
2 •

•••• 1

~

1•
I

II rT1 22

"
1:1--' rr~:t"""' ~

~ ~3 •

" 1I
II rT1 21

23 ~Ir~r •...~
~ ~

4 •
.••• 1

"
.........,

II rt"1 ~ 20

,,: Jr-r •...~
~ ~

5
.••• 1

r ~
3l- 1r., 18

" s:=-r f""'- ~ :i~<L-!:A.l
6 ~ """'II

":: I 1II ~ 18., 1:1--' Ir-~....~
~ ~1 •

••
.........,

I
~l'5- _ II r.;t;;1 11

55 ~~ .... ~
~ ~8

" 1I
II m 16

"
.r- :t"""' ~

~ P4i.,
8

••
•........•

IT --,on ~ 15

71 t:: ~;f ~ ~
L.1:A.l

10 l--- .••• 1

"
.........,

II m ~ 14

" Ir-r'" ~ti~:L~
11 ~ ~ """'11

~ 13

"



112] 4 S I 7 1'1011 1211141S "UIIII 21212221 2tZSUn lll,)l11 U]])4]5 JIJJJllI· .l,
I 'p 13
3 •...·,·2 ........:: ...•

J~ ~
~ ··""" "i'D Z2

"" •...
"" -"" •....

""" T"21 -. .. "
,~ :

""""" I 20"30 I
"Jl -J3

" •.... """ -- ,..
"" -.. "•

) ::
~ ..

"""..
".... •....

".. -..
" •.•... 11"" -- T".. -

I" "
, :: ~

""""..
".. •....

"".. -".. •... ".... -- T..
" -

,," "
,,:::: ::

~
"

~
"" •...

""" ,.
"" - Wl"



, •....
I' '123 4511 1'1011 Il131415 llnl'l' 2D2lnn 24152121 !I II 30 3' Jl333U5 35:1131311· Mr>J

,
I n,· ~.-•...,,

~ ..•
, ..•

•,
"" :>';T"""\ .I.." """ r ~
"""" FI :>';T"""\ •... "".. J 1""· n

, ..
"n
" !J" ::>';T"""\" - "" D Q

" :r •...
"" Q
" = IJ" >';T"""\ "n

"
D Q

" r •...
" Q fI· " .. -

I ....
"" ~.. >;T"""\ - ".. D Q.. ~'- •..
".. 1S IJ.. =" ::>.;~ "" D Q~ J'

•...~~ Qh• " .. -
· """"Ol >.-;~ """ :r I'"~

"Ol :>';T"""\ •... "". :r 1•
"""

"
""" ::>';T"""\. •... "n

" ~'- 1" ~""



I •••.•...
01" .1.' '1'011 1213.411 18111"1 1lI21Z7r3 24252121 21 N:lO 31 3233305 30 3731:N,

~~JI
I n
I· :r ....

I
I•

I ~
,

........-
I

•,
"

~
II
II M~ - n" 0 Q

" :r •....
"" Q

~
II =" l'T> "" 0 Q
m •...
"n ~h· n

· ..
n

"..
~" ~~ - m"•. 0 Q •....

" :r~ Q•.
~~ ::::>'-;T""""l = "" 0 Q

" r •...
"" ~l• "

, ~ ~
~

C

""" ~.. .>.J~ - "C.. 0 Q •...
" :rII Q..

~•. 1'T> = II"~ 0 Q •...•.~ ~h, ..
· ~ ~

~ .. ~
"..

'"":l.... .>.--t", - ""~ 0 Q •...
a r.. Q

" '"":l.. :>.-;'" = "" 0 Q.. :r •.....
m ~h" ~ " ~

"
n In
" :)Jr> .... """ :r 1,.
•• ~"



,,,,,"
-v

.111 41.7 '11111 11111415 11\Jlll' l'Illnn '4alll1 , ~,,,. ,
I IJ.I :>.;~I IS, -a •...· *'••

~· ~ ...•
~ ••II

hII
II 1'f) roo n"14 ~
"II -~ is hII
II ),;~ ~ "II D Q.. =r •...
"n ~~l· IS ...•

• ..
"..

h" 1;'TJ.. ro-o ....
" ~
"~ ~ Q

" ),;~ ~ n..
" II" D Q.. =r ~
".. ~~l· . ..

J ~ ......
G :>.;~ n.... r-- II

" D Q.. *' •..
fi -.. ~ Q

h..
~D-- i==..

II

" t- D Q~ ~
".. ~~l..•

•
II
lJ..

h.... ),;~ r-- II" D QII

J
•..

a.. ~ Q hII F=.. ),;~ II"" D Q

" J' •..
II >-~Il

II
II

~
II

n
IS

DpD -;J." "IS n-Il •..
" ~
II
II

'" "17 '11011 1213141S 11171111 ZOllntJ '452'127 Zl2t31131 323UU5 .3131.



84 PIN PLCC
(88 PGA) NC(6)

5 (5)

Monolithic W Melnorles



PAL/HAL Logic Circuit Diagram 64R32

Logic Diagram and Pinout for 84-Pin PLCC and 88-Pin-Grid-Array 84 PIN PLCC

(8) m (6) IS) 14) (3) (2) (I) tBB1I8n186J1851(84)183)(82)181) (111)179) (781
(88 PGA)

(12) (111110) (9)
HC 11 10 9 8 7 654 3 21M ~ U ~ III N n n 76 75 HC VCC-74(77]

(13)12 -L l!nHllhb!~~ V 11 17 l!dnl ~ V V
~~

73(76)
(14)13 ~~~ ~. '0255

72 (75)

(15)14 I~ ~iT 1h-ll .1 71 (74)

"c- m rfq,'- ~a .r =~ r.1 j'
(16)15 ~n r~:m :l 70 (73)

II.!.,. ·15~ M~r ljo::rl
:::~

~~c-
~T

16~ ~ J
(17)16 I:' 1"b--ill .1 111(72]

(18)17
"c-

~~
-.• .r t:: ~ r.1 j'

88(71)I'" r tiD~ :1
.31~ ~22~r ,

II""'" ::: ~l
C-

~I ~. ~223 ~ j
119)18 1"'iI::L J~ -'-T 67 (70)

~C- m~ '- ·a gr =~ r.1 J'
(20)19 l~'" HIp 1 r ti Ji -'-:1 88(89)

~
+47~ ~3IIrI'"' ::: -I

C- t ~m ~207 ~ J
121)20 1"b--ill ,I 116(68)

I~r ~== ~I gr -~ J'
(22)21

~
r ti Ji ,I MI67J

~
~92~ ~~

AND

IJ: ~
64 ARRAY ~191 ...$J

(23)22 ~ 1":c- J'I "_I 83(66)

-J=~ T u: -~ m J'
(24)23

It.. x ~ ~ r ti J'I -'-:1 52 (65)

~N ~76·
'.I-.

I~ ~I
~

C-
~ -I _175 ~ J

(25)24 I"" Ih-J'I ":.1 61 (84]

'J: ~== .r =~ r.1 j"'-
(26)25 I~"" r tiDi ••..,1 111163),

• 1l5~ ~~ . ,~ • ..
1- :::, ~l

(27)26
C-Ih -) fil59 ~ JI~'" ~L-JDIi1I T'iI::L J~ •...:1 59 (62]

(28)27
J: m~ .r =~ r.1 j'

I~"" ~~ In Ji -"'=r 58(81)
~

·1I~ ~~r ,
II~ ::: "1""'1

C- 1t -JOOii 11_ §W143 ~ J
(29)28 1'" 1"~ .1 57 (50)

J: ~~ •• g-r f- ~ r£1 J
130)29 I~"" r 'R::i: Ji .1 56159)

~ II~ ·127~ ~28r .
(31)30 ~ :::, -, -<I- 55158)

(32)31
~

541S7]~~;qqqqqqqqqU;qqU;{ ~ ~
(33)32 -vcc HC 3334 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 HC

(34) 135)136) ~~~~~~~~~~~~~~~~ 153)154)1551 156)

Monolllhic W Memories 2-67



VENDOR MegaPAL'· PAL20RA10 PAL24RS PAL20 PAL24 PAL24A

Data I/O -Logic PAK -Logic PAK -Logic PAK -Logic PAK -Logic PAK -Logic PAK(32R16only)

Kontron
-EEP 80* -EEP 80 -EEP80- - - PAL Adapter PAL Adapter PAL Adapter

Structured -SO 1000 -SO 1000 -SO 1000Design - - -

Stag - - - -ZL30 -ZL30 -ZL30

Varix Omni -Omni* -Omni -Omni
Programmer - - Programmer Programmer Programmer

Valley Data - - - -Model 160 -Model 160 -Model 160Sciences

Storey Systems - - - -P240* -P240 -P240

Digelec - - - -UP803* -UP803 -UP803

* Except 16P8A, 16RP8A, 16RP6A, 16RP4A
MegaPAL'· is a trademark of Monolithic Memories.

The above chart represents those units which, at the time of printing, have been submitted to Monolithic Memories for evaluation
and have demonstrated the capability to satisfactorily program the indicated devices.





Monolithic W Memories



PALASM® Software Syntax

PLE™Circuit Introduction

PLE Circuit Specifications

PLE Circuit Applications

Article Reprints

Representatives/Distributors



PAL Device Applications 3-1
Table of Contents for Section 3 ..............................•..................... 3-2
A Work Session Using PALASM2 Menu 3-3

A. Combinational Applications
1. Basic Gates (Positive Logic) ......•..................... 12P6
2. Basic Gates (Negative Logic) 12P6
3. 4 to 16 Decoder 6L 16
4. PC I/O Mapper ....................................•.... 8L 14
5. Multiplexers 4:1 MUltiplier ....................•.....•... 18P4
6. Octal Comparator 16Cl
7. 3 to 8 Demultiplexer 16R8
8. Octal Latch 10HPAL20P8E

B. Synchronous Applications
9. Basic Flip-Flops ...........................•.......... 16RP8

10. 9-Bit Register ....................•..•.....•.......... 20Xl0
11. 10-Bit Register 20Xl0
12. 16-Bit Barrel Shifter 64R32
13. Addressable Register 32R16
14. Traffic Signal Controller 16RP8
15. Memory Handshake Logic 16RP8

C. Counter Applications
16. 4-Bit Counter ........................•............... 16RP4
17. 8-Bit Counter ........................•........•.•..... 20X8
18. 9-Bit Counter ..................•..•..•............... 20Xl0
19. 10-Bit Counter .................•........•..•..•..... 20RS10
20. 5-Bit Up Counter ...........................•..•..... 20RA 10
21. 5-Bit Down Counter 20RA 10

D. Asynchronous Applications
22. 7-Bit I/O Port with Handshake Logic ....•..•........... 20RA10
23. Serial Data Link ...............................•..... 20RA10
24. Interrupt Controller .............•.................... 20RA10

E. Video Frame Grabber 64R32
20RA10

16R8

3-7
3-7
3-9

3-10
3-11
3-13
3-14
3-15

3-16
3-17
3-18
3-19
3-21
3-23
3-25

3-27
3-28
3-29
3-30
3-31
3-33

3-35
3-37
3-40

3-44



Given below IS an example of how to use the PALASM2 Menu
to Assemble and Simulat~ your Pal DesIgn Specification(PDS).
The PDS file name appears after the tItle "work file" and
its rel;;.c.ed e>:tensions 03fter the title "E>:t". Each Menu
command has a highliqhted character Clnd is In upper case.
So on pressing a hIghlIghted char03cter. the correspondIng
Menu command IS execLlted.

In the follOWIng e~:ample. we assume the user already has
created the PDS f i I e. BGATESP. PDS and call ed the Menu.

Wor-IfIle
Edl t
LI5t
Oi rector-y
delete Fi Ie
pr-I nt docUment
dos coMmand

PALA5M2
Assemble
51 mul ate
Zhal

MENU
Progr-ammer Interface
Convert pal asm! to pal a5m2
Quit

Workfile
EdIt
LIst
Dl rectory
delete Fi I.
pr i nt docUment
dos coMm",nd

PALASM2
Assemble
Slmulate
Zhal

MENU
Programmer interface
Convert pala5ml to pal a5m2
OUI t

MonolithIC MHI MemorIes --------)E fj_l_e_, _'_'G_A_TE_S_P_" _PD_S_E_,; t_,_PD __S ..• __ . ... _

PALASM2 MENU I
Worlflle Assemble Programmer \nterface \
EdIt SImulate Convert pal •.•sml to palasm2 I
List Zhal QUlt
01 rectory I
delete Fi Ie
prInt docUment 1
do'S coMmil.nd

-------------------

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

BaSIC Gates (PoSltIVP LoqIC)
BGates. pds
B
A G G11 bert
MonolIthic MemorJeS Inc .• Santa Clara. CA
1/7/85

;F'ALs which featLlre programable output polar-ity such 039

;the PALI2P6 in this E!>:ample offer the designer superIor
::flexability compared to pr-evlous PALS. The subtle advantage
: of the Olltput pol ar i ty fuse IS that 1 tallows I Ogl C to
:be implemented in eIther posltive or negatIve form wlthin
;the same PAL. This means that the number of product terms
;required to reali::e an output may be reduced by optImal
;choise of positive or negative logic. If I<"arnollgh Map!!.
;are used by the designer to slmplify the logic eqllatlon
;for an Olltput. either clumps of 1-'5 or 0'5 may be circled
;to reduce the equatIon.

" " "" 1 "1 " : "I 1 •
OR FUNCTION F G H-----------

" " "" 1 1 •
1 " 1 •
1 1 1 •

NAND FUNCTION J L
-----------

" " 1

" 1 1
I 0 1
1 I "

;NOR FUNCTION M N 5-----------
" (. 1 •
" 1 "1 " "1 1 "

; XOR FUNCTION P R

000
" 1 1
1 " 1
1 1 0

TRACE_ON ABC 0 E F G H J K L M N S P Q R
SETF IA IC 10 IF IG 13 IK 1M IN IP 10
SETF A IC 0 IF G 1 J K 1M N IP Q

SETF C 10 F IG J IK M IN P 10
SETF C 0 F G J k M N P Q



MonolithIc MMI Memo•...l[~S _~ ~ )L.:0r'"k file: BGATESP.PDS Ext: PDS _. ~ __

PALASt12MENU--~-----J~Jol""l fIle Assemble Programme •... Interface

EdIt SImulate Convert pal41sml to palasm1
I-lst Zhal QllI t
Dl •...ectory
delete FIll
prInt doc:LJmPflt

dos coMman<1-~~-- ----~- ----------~------

******************PALASM Version 2.0
******************

Source file name [defaLllt: specs.datJ :BGATESP.PDS
Processing BGATESP.PDS
Create error file [default: No) ?

Equation being processed is for output=:» B
Equation being processed is for output==» E
Equation being processed is for- output==» H
Equation being processed is for output=-=» L
Equation being processed is for output==» S
Equation being processed is for output==» R
The fuseplot is stored in ===>BGATESP.xpt
The jedec is stored in ===)BGATESP.jed
All done~
Strike a key when ready

------- MonolithiC; MMI Memori.es _

~w_o_rk_f __'_le_'__.G_ATESP-P __D__S Ext: PDS.XP1.JED. . __ ..J

Workfile
Edit
List
Di.rectory

delete File
print doeUment
dos coMm.:lnd

PAlAS/'12
AS5embl e

5i mul ate
Zh.:ll

MENU
Programmer int.erfo"lce
Convert pal a5mt to pal 35m2
Quit

Title
Patt.ern
Revision
Author
Company
Date

Basic: Gates (Positive)
BGates.pds
B
A G Gilbert
Monolithic: Memor'ies Inc., Santa Clara~ CA
117/85



MENU
Programmer Intl?rface
Convert pal ;"sml to pal ","sm2
RUl t

o 0000 0000 0000 0000 0000 0000 0000 0000
1 0000 0000 0000 0000 0000 0000 0000 0000
2 0000 0000 0000 0000 0000 0000 0000 0000
3 0000 0000 0000 0000 0000 0000 0000 0000
4 0000 0000 0000 0000 0000 0000 0000 0000
5 0000 0000 0000 0000 0000 0000 0000 0000
6 0000 0000 0000 0000 0000 0000 0000 0000
7 0000 0000 0000 0000 0000 0000 0000 0000

-- More --

Wor~ fIle
EdIt
List
DIrectory
deletE' FIle
prInt docUment
dos coMmand

PALA5M2
Assembl e
51 mul ate
Zhal

8
9 xxxx

10 XXXX
11 xxxx
12 0000
13 0000
14 0000
15 0000

16 X-X-
I? xxxx
18 0000
19 0000
20 0000
21 0000
22 0000
23 0000

---xxxxxxxxxxxxx
0000
0000
0000
0000

--DOxxxx XXOO
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

--DO
XXOO
XXOO
XXOO
0000
0000
0000
0000

--DO
XXOO
XXOO
XXOO
0000
0000
0000
0000

--DO
XXOO
XXOO
XXOO
0000
0000
0000
0000

--DO
XXOO
XXOO
XXOO
0000
0000
0000
0000

xxxxxxxxxxxx
0000
0000
0000
0000

X xxxxxxxxxxx
0000
0000
0000
0000

--DO --DO --DO
XXOO XXOO XXOO XXXX xxxx
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000

--DO
XXOO
0000
0000
0000
0000
0000
0000

--DO
--DO
0000
0000
0000
0000
0000
0000

--DO
--DO
XXOO
XXOO
0000
0000
0000
0000

0000
(1000
0000
0000
0000
0000
0000
0000

-XOO
XXOO
0000
0000
0000
0000
0000
0000

--DO
--DO
0000
0000
0000
0000
0000
0000

--DO
--DO
XXOO
XXOO
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

-XOO
XXOO
0000
0000
0000
0000
0000
0000

--DO
--DO
0000
0000
0000
0000
0000
0000

--DO
--DO
XXOO
XXOO
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

--DO
XXOO
0000
0000
0000
0000
0000
0000

X-DO
-XOO
0000
0000
0000
0000
0000
0000

--DO
--DO
XXOO
XXOO
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

BGATE5P. PC5
BGiHE5P. XPT
BGATE5P. JED

24 X--- --DO --DO --DO --DO
25 X-DO --00 --00 --00
26 0000 0000 0000 0000 0000 0000 0000 0000
27 0000 0000 0000 0000 0000 0000 0000 0000

-- More --
28 0000 0000 0000 0000 0000 0000 0000 0000
29 0000 0000 0000 0000 0000 0000 0000 0000
30 0000 0000 0000 0000 0000 0000 0000 0000
31 0000 0000 0000 0000 0000 0000 0000 0000

XXXX
0000
0000
0000
0000
0000
0000

XXXX
0000
0000
0000
0000
0000
0000

Title
Pattern
Revision
Author
Company

Basic Gates (Positive>
BGates.pds
B
A G Gilbert
Monolithic Memories Inc .. Santa Clara, CA

32
33 XXXX XXXX
34 0000 0000
35 0000 0000
36 0000 0000
37 0000 0000
38 0000 0000
39 0000 0000

40
41
42 0000 0000
43 0000 0000
44 0000 0000
45 0000 0000
46 0000 0000
47 0000 0000
-- More
48
49
50 XXXX XXXX
51 XXX X XXXX
52 0000 0000
53 0000 0000
54 0000 0000
55 0000 0000

56 0000 0000
57 0000 0000
58 0000 0000
59 0000 0000
60 0000 0000
61 0000 0000
62 0000 0000
63 0000 0000

-X--x---
0000
0000
0000
0000
0000
0000

PALl2P6
BASIC GATES*
GO*FO*
LOOOO
111111101111111111111111
000000000000000000000000
000000000000000000000000
000000000000000000000000
010111111111111111111111
000000000000000000000000
111101111111111111111111
111111110111111111111111
111111111110101111111111
000000000000000000000000

0000
0000
0000
0000
0000
0000

---x
XXX X
XXXX
0000
0000
0000
0000

XXXX
XXX X
0000
0000
0000
0000 111111111111110110111111

111111111111111001111111
111111111111111111111110
11111 t 111111111111101 t II
000000000000000000000000
OOO(H)OOOOOOOOOOOOOOOOOOO
111111
*CI9IB*
55ED

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000



Wor-~.fl1 e
EdIt

List
Oi r-ector-y

delete Fl Ie

pr-lnt docUment

dos coMmClnd

PALASMZ

A~~embl e
51 mul ate
Zhal

MENU
Pr-0.;lr-ammer- inter-face

Conver-t pal asm! to pal asm2

QUl t

BGATESP. POS

BGATESP. ICPT

BGATESP. JED
BGATESP. HST
BGATESF'. TRF

TRACE_ON
SETF
SETF
SETF
SETF

Page:
gggg

A LHHH
B HLLL
C LLHH
o LHLH
E LLLH
F LLHH
G LHLH
H LHHH
J LLHH
K LHLH
L HHHL
M LLHH
N LHLH
S HLLL
P LLHH

Mor-e

Wor-I,dile

Edit

L1st
Oi r-ector-y

delete File
pr- i nt dOI;;Ument

dos coMmand

PALASM2

A5semble

SI mul ate
Zhal

MENU
Pr-ogr-ammer- Inter-face

Convert pal asm! to p.l,;r,sm2

Qui t

MENU

Programmer InterfacE'
Conver-t pal a~ml to pal asm2

Quit

WorJ.'file

Edit

LIst
01 rector-y

delete File
prl nt docUment

dos coMmand

PALASM2

Assembl e
Slmul,ate

Zhal



TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

Basic Gates (Negative Logic)
BGatesn.pds
A
A G GILBERT
Monolithic Memories Inc., Santa Clara, CA
1/9/85

; It is worthwhile for the novice PAL designer to compare
;the number of product terms required to realize these
;basic functions implemented in negative logic with the
;same functions implemented in positive logic.

CHIP BASIC_GATESPAL12P6

COFGMNPQIGNO
JKLRSHEBAVCC

A I •

o I 1
1 I 0 *

I
I
I
I

F G I H-----------
I 0 •
I 1
I 1
I 1

J K I L
-----------

I 1
I 1
I 1
I 0 •

o 0 •

o 1
1 1
1 0 •

TRACE_ONABC 0 E F G H I J K L M N P Q R S

$ETF A C 0 F G J K M N P Q
SETF /A /C /F /J /M /P
SETF /0 /G /K /N /0
SETF C F J K P

Page:
gggg

A HLLL
• UlHH
C HLUl
o HHLL
E HLLL
F HLUl
G HHLL
H HHUl
I XXXX
J HLUl
K HHLL
L UlHH
M HLUl
N HHLL
P HLUl
o HHLL
R UlUl
S LUlL

Title Basic Gates (Negative Logic)
Pattern BGatesn.pds
Revision A
Author A G Gilbert
Company Monolithic Memories Inc. , Santa Clara, CA
Date 1/9/85

PAL12P6
BASIC_GATES

11 1111 1111 2222 2222 2233
0123 4567 .901 2345 6789 0123 4567 8901

0 0000 0000 0000 0000 0000 0000 0000 0000
1 0000 0000 0000 0000 0000 0000 0000 0000
2 0000 0000 0000 0000 0000 0000 0000 0000
3 0000 0000 0000 0000 0000 0000 0000 0000
4 0000 0000 0000 0000 0000 0000 0000 0000
5 0000 0000 0000 0000 0000 0000 0000 0000
6 0000 0000 0000 0000 0000 0000 0000 0000
7 0000 0000 0000 0000 0000 0000 0000 0000

8 --X- --00 --00 --00 --00
9 XXXXXXXXXXOOXXOOXXOOXXOOXXXXXXXX

10 XXXXXXXXXXOOXXoo XXoo XXoo XXXXXXXX
11 XXXXXXXXXXoo XXoo XXoo XXoo XXXXXXXX
12 0000 0000 0000 0000 0000 0000 0000 0000
13 0000 0000 0000 0000 0000 0000 0000 0000
14 0000 0000 0000 0000 0000 0000 0000 0000
15 0000 0000 0000 0000 0000 0000 0000 0000

16 ---x --00 --00 --00 --00
17 -X-- --00 --00 --00 --00
18 0000 0000 0000 0000 0000 0000 0000 0000
19 0000 0000 0000 0000 0000 0000 0000 0000
20 0000 0000 0000 0000 0000 0000 0000 0000
21 0000 0000 0000 0000 0000 0000 0000 0000
22 0000 0000 0000 0000 0000 0000 0000 0000
23 0000 0000 0000 0000 0000 0000 0000 0000

24 -X-- -XOO --00 --00 --00
25 XXXXXXXXXXOOXXOOXXOOXXOOXXXXXXXX
26 0000 0000 0000 0000 0000 0000 0000 0000
27 0000 0000 0000 0000 0000 0000 0000 0000
28 0000 0000 0000 0000 0000 0000 0000 0000
29 0000 0000 0000 0000 0000 0000 0000 0000
30 0000 0000 0000 0000 0000 0000 0000 0000
31 0000 0000 0000 0000 0000 0000 0000 0000

32 --00 X-OO --00 --00
33 --00 --00 X-OO --00
34 0000 0000 0000 0000 0000 0000 0000 0000
35 0000 0000 0000 0000 0000 0000 0000 0000
36 0000 0000 0000 0000 0000 0000 0000 0000
37 0000 0000 0000 0000 0000 0000 0000 0000
38 0000 0000 0000 0000 0000 0000 0000 0000
39 0000 0000 0000 0000 0000 0000 0000 0000

40 --00 --00 --00 X-OO X---
41 --00 --00 --00 -XOO -X--
42 0000 0000 0000 0000 0000 0000 0000 0000
43 0000 0000 0000 0000 0000 0000 0000 0000
44 0000 0000 0000 0000 0000 0000 0000 0000
45 0000 0000 0000 0000 0000 0000 0000 0000
46 0000 0000 0000 0000 0000 0000 0000 0000
47 0000 0000 0000 0000 0000 0000 0000 0000



48 ---- ---- --00 --00 --00 --00 --x- --x-
49 XXXX XXXX XXOO XXOO XXOO XXOO XXXX XXXX
50 XXXX XXXX XXOO XXOO XXOO XXOO XXXX XXXX
51 XXXX XXXX Xxoo XXOO XXOO XXOO XXXX XXXX
52 0000 0000 0000 0000 0000 0000 0000 0000
53 0000 0000 0000 0000 0000 0000 0000 0000
54 0000 0000 0000 0000 0000 0000 0000 0000
55 0000 0000 DaDo 0000 0000 DODO 0000 0000

56 0000 0000 0000 0000 0000 0000 0000 0000
57 0000 0000 0000 0000 0000 0000 0000 0000
58 0000 0000 0000 0000 0000 0000 0000 0000
59 0000 0000 0000 0000 0000 0000 0000 0000
60 0000 0000 0000 0000 0000 0000 0000 0000
61 0000 0000 0000 0000 0000 0000 0000 0000
62 0000 0000 0000 0000 0000 0000 0000 0000
63 0000 0000 0000 0000 0000 0000 0000 0000

OUTPUT PINS: 111111
345678

POLARITY FUSE: XXXXXX

TOTAL FUSES BLOWN: 203

JEDEC Output

Title
Pattern
Revision
Author
company
Date

Basic Gates (Negative Logic)
BGatesn.pds
A
A G Gilbert
Monolithic Memories Inc., Santa Clara, CA
1/9/85

Logic Symbol

c vcc

0 A

B

G E

M H

N 5

P R

Q

K

GND

PAL12P6
BASIC GATES.
GO*FO*
LODOO
111111011111111111111111
00 a a a 00 a 00 a 00 00 a 00 00 00 00
aD 0 a a 00 a 00 a 00 a 0 a 00 a 0 a a 00
00 a a000 a 00 a 00 a 0a 00 00 a 0a 0
111011111111111111111111
101111111111111111111111
111110111011111111111111
a a a a 0 a a a a a a a a a 0 a a 0 0 0 a a a a
111111111101111111111111
111111111111011111111111
111111111111110101111111
111111111111111010111111
111111111111111111011101
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000

Monolithic mMemories



Title
Pattern
Revision
Author
company
Date

Page: 1
qqqqqqqqqq qq

D LLLLHLLLLL LL
8 LLHHHHHLLL LL
C LLIJiHHLLLL LL
A LHHHHHHHLL LL
00 LHHHHHHHUI HH
01 HLHHHHHLHH HH
02 HHHHHHHHHHHH
03 HHUlHHLHHH HH
Q4 HHHHHHHHHHHH
Q5 HHHHHHHHHHHH
Q6 HHHHHHHHHHHH
07 HHHlJiLHHHH HH
08 HHHHHHHHHHHH
Q9 HHHHHHHHHHHH
QIO HHHHHHHHHHHH
Qll HHHHHHHHHHHH
012 HHHHHHHHHHHH
Q13 HHHHHHHHHHHH
Q14 HHHHHHHHHHHH
015 HHHHLHHHHHHH

4to16 Decoder
4-16DEC.PDS
A
Mehrnaz Hada
Monolithic Memories,
1/9/85

QO Ql Q2 ABC 0 ENI EN2 Q3 Q4 GND Q5
Q6 Q7 Q8 Q9 Q10 Qll Q12 Q13 Q14 Q15 VCC

EQUATIONS

IQO - 10*IC*/B*/A* ENl* EN2 ;Oecode 0000
IQ1 •. 10* IC* IB* A* ENl* EN2 ;Oecode 0001
IQ2 - 10*IC* B*/A* ENl* EN2 iOecode 0010
IQ3 "" ID*IC* B* A* ENl* EN2 ;Oecode 0011
IQ4 = 10* C*/B*/A* ENl* EN2 ;Oecode 0100
IQ5 •. 10* C*/B* A* ENl* EN2 ;Oecode 0101
IQ6 •. 10* C* B*/A* ENl* EN2 iOecode 0110
IQ7 - ID* C* B* A* ENl* EN2 iOecode 0111
IQ8 D*IC*/B*/A* ENl* EN2 iDecode 1000
IQ9 - D*/C*/B* A* EN1* EN2 iDecode 1001
IQ10 - D*/C* 8*/A* ENl* EN2 iDecode 1010
IQll D*/C* B* A* ENl* EN2 iOecode 1011
IQ12 - D* C*/B*/A* ENl* EN2 iDecode 1100
IQ13 - D* C*/B* A* ENl* EN2 ; Decode 1101
IQ14 - D* c* B*/A* ENl* EN2 iDecode 1110
IQ15 - D* c* B* A* ENl* EN2 iDecode 1111

Title
Pattern
Revision

4to16 Decoder
4-16DEC. PDS

A

TRACE ON 0 B C A QO Ql 02 03 04 05 06 Q7 Q8 09 QIo
- Qll 012 013 014 Q15

SETF ID Ie IB IA EN1 EN2
SETF A
SETF B
SETF C
SETF D
SETF 10
SETF IC
SETF IB
SETF IA
SETF IENI
SETF ENI IEN2
SETF IENI

; Set outputs to high
i Set outputs to high
iSet outputs to high

o -x-x -x-x x-x-
l X-X- X-X- X-X-
2 X--X -X-X X-X-
3 -XX- -X-X x-x-
4 -XX- X-X- X-X-
5 X--X X-X- X-X-
6 -X-X X-X- X-X-
7 X-X- -XX- X-X-
8 -XX- -XX- x-x-
9 X--X -XX- x-x-

10 -X-X -xx- x-x-
II X-X- -X-X X-X-
12 X-X- X--X X-X-
13 -XX- X--X X-X-
U -X-X X--X x-x-
IS X--X X--X X-X-

The 4 to 16 decoder. decodes four binary decoded inputs
into one of 16 mutually exclusive outputs, whenever the
two enable lines ENI and EN2 are high. When one or both
of the enable lines are low the outputs are all set to
high values.

TOTAL FUSES BLOWN: 96

Logic Symbol

00 VCC

01 015

02 014

A 013

B 012

C all

D 010

ENl 09

EN2 as

03 07

04 06

GND as

Author
company
Date

Mehrna z Hada
Monolithic Memories,

1/9/85



Title PC I/0 Mapper
Pattern MemIO.pds
Revision A
Author A G Gilbert
Company Monolithic Mellories Inc •• Santa Clara, CA
Date 1/8/85

lPersonal computers which are hardware compatible with the
lubiquitous IBM PC .hare this I/0 .ap.

CHIP PC_IO PALSL14

NC HC A9 A8 A7 A6 AS U A3 AEN /CSMOHOCHRKADGND
/CSGAMEIOAD /CSCOLORAD /CSPRINTERAD /CSSFLOPPYAD /CSRS232AD /CSNMIMKRG
/CSDMAPGRG /CSPPICHIP /CSTIMERCHIP /CSINTCCHIP /CSDMACCHIP VCC

IParallel peripheral interface
lChip select
lHEX address 060-063

;DM-' page register
;Chip .elect
;HEX address 080-083

;5.25 floppy disk module
;Device select
lHEX address 3FO-3F7

;Parallel printer module
1 Devic. select
lHEX address )78-37F

;Color graphics video module
;Device select
;HEX address 3DO-3DF

TRACE ON A9 A8 A7 A6 AS A4 A) AEN /CSMONOCHRMAD
- /CSGAMEIOAD /CSCOLORAD /CSPRINTERAD /CS5FLOPPYAD

/CSRS232AD /CSNKIMKRG /CSDMAPGRG /CSPPICHIP
/CSTIMERCHIP /CSINTCCHIP /CSDMACCHIP

SETF -'EN
SETF IA9 IA8 /A7 /A6 /A5 IU IA3 /AEN
SETF AS
SETF A6
SETF /A5 A7
SETF AS
SETF A4 /A6
SETF A9 A8 A7 A6 AS A4 A3
SETF /A)
SETF IA5
SETF /U IA6 IA7 /A8
SETF A9 A8 A7 /A6 AS U

9999999999 99
A9 XLLLLLLHHH HH
A8 XLLLLLLHHH LH
A7 XLLUIHHHHH LH
A6 XLLHHHLHHHLL
AS XIJiHLHHHHL LH
A4 XLLLLLHHHH LH
A3 XLLLLLLHLL LL
AEN HLLLLLLLLL LL

/CSMONOCHRMADHHHHHHHHHHHL
/CSGAMEIOAD HHHHHHHHHHLH
/CSCOLORAD HHHHHHHHHLHH
ICSPRINTERAD HHHHHHHHHHHH
/CS5FLOPPYAD HHHHHHHHLHHH
/CSRS232AD HHHHHHHLHHHH
/CSNKIMKRG KHHHHHHHHHHH
/CSDMAPGRG HHHHHHHHHHHH
/CSPPICHIP HHHLHHHHHHHH
/CSTIMERCHIP HHHHHHHHHHHH
/CSIHTCCHIP HHLHHHHHHHHH
/CSDMACCHIP HLHIUIHHHHHHH

Title : PC I/O Mapper
Pattern : Me.IO.pds
Revision : A
Author : A G Gilbert
Company : Monolithic Memori •• Inc
Date : 1/8/85

o XXXX XXXX XXXX XXXX
1 -X-X -X-X -X-X ---x
2 XXXX XXXX XXXX XXXX
3 -X-X -X-X X--X -X-X
4 -X-X -XX- -X-X -X-X
5 -X-X -XX- X--X -X-X
6 -x-x X--X -X-X -X-X
7 -X-X X--X X--X ---X
8 X-X- X-X- X-X- X--X
9 X-X- X-X- X-X- -X-X

10 X--X -XX- X-X- X--X
11 X-X- X-X- -XX- ---x
12 X-X- X--X X-X- ---X
13 X--X -X-X -X-X ---X



TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

4: 1 MUX
MUX4. PDS
A
John Birkner
Monolithic Memories Inc. Santa Clara, CA
1/8/85

CHIP MUX4 PAL18P4
INPUTOO INPUTOl INPUT02 INPUT03
INPUTIO INPUTll INPUT12 INPUT13
INPUT20 INPUT21 INPUT22 GND
INPUT23 INPUT30 INPUT31 INPUT32
OUTPUTO OUTPUTl OUTPUT2 OUTPUT3
INPUT33 SELECTO SELECTI VCC

OUTPUTO - INPUTOO. /SELECTl • /SELECTO
+ INPUT01. /SELECT1. SELECTO
+ INPUT02. SELECT1. /SELECTO
+ INPUT03. SELECT1. SELECTO

OUTPUTl - INPUTIO. /SELECTl • /SELECTO
+ INPUTll. /SELECT1. SELECTO
+ INPUT12. SELECT1. /SELECTO
+ INPUT13. SELECT1. SELECTO

OUTPUT2 - INPUT20. /SELECTI • /SELECTO
+ INPUT21· /SELECTI. SELECTO
+ INPUT22. SELECTI. /SELECTO
+ INPUT23. SELECTI. SELECTO

OUTPUT3 - INPUT30. /SELECTI • /SELECTO
+ INPUT31. /SELECTI. SELECTO
+ INPUT32. SELECT1. /SELECTO
+ INPUT33. SELECTI. SELECTO

TRACE ON
INPUTOO INPUTOI INPUT02 INPUT03
INPUTIO INPUTll INPUT12 INPUT13
INPUT20 INPUT21 INPUT22 INPUT23
INPUT30 INPUT31 INPUT32 INPUT33
SELECT 1 SELECTO
OUTPUTO OUTPUTl OUTPUT2 OUTPUT3

SETF /SELECTI /SELECTO

SETF /INPUTOO /INPUTOI /INPUT02 /INPUT03
/INPUTIO /INPUTll /INPUT12 /INPUT13
/INPUT20 /INPUT21 /INPUT22 /INPUT23
/INPUT30 /INPUT31 /INPUT32 /INPUT33

SETF INPUTOO INPUTIO INPUT20 INPUT30

SETF INPUTOO INPUTOI INPUT02 INPUT03
INPUTIO INPUTll INPUT12 INPUT13
INPUT20 INPUT21 INPUT22 INPUT23
INPUT30 INPUT31 INPUT32 INPUT33

SETF /INPUTOO /INPUTIO /INPUT20 /INPUT30

SETF /SELECTI SELECTO

SETF /INPUTOO /INPUTOl /INPUT02 /INPUT03
/INPUTIO /INPUTll /INPUT12 /INPUT13
/INPUT20 /INPUT21 /INPUT22 /INPUT23
/INPUT30 /INPUT31 /INPUT32 /INPUT33

SETF INPUTOI INPUTll INPUT21 INPUT31

SETF INPUTOO INPUTOI INPUT02 INPUT03
INPUTIO INPUTll INPUT12 INPUT13
INPUT20 INPUT21 INPUT22 INPUT23
INPUT30 INPUT31 INPUT32 INPUT33

SETF /INPUTOI /INPUTll /INPUT21 /INPUT31

SETF SELECTI /SELECTO

SETF /INPUTOO /INPUTOI /INPUT02 /INPUT03
/INPUTIO /INPUTll /INPUT12 /INPUT13
/INPUT20 /INPUT21 /INPUT22 /INPUT23
/INPUT30 /INPUT31 /INPUT32 /INPUT33

SETF INPUT02 INPUT12 INPUT22 INPUT32

SETF INPUTOO INPUTOI INPUT02 INPUT03
INPUTIO INPUTll INPUT12 INPUT13
INPUT20 INPUT21 INPUT22 INPUT23
INPUT30 INPUT31 INPUT32 INPUT33

SETF /INPUT02 /INPUT12 /INPUT22 /INPUT32

SETF SELECTI SELECTO

SETF /INPUTOO /INPUTOI /INPUT02 /INPUT03
/INPUTIO /INPUTll /INPUT12 /INPUT13
/INPUT20 /INPUT21 /INPUT22 /INPUT23
/INPUT30 /INPUT31 /INPUT32 /INPUT33

;SEL 0
;SEL 1
;SEL 2
;SEL 3

;SEL 0
;SEL 1
;SEL 2
;SEL 3

;SEL 0
;SEL 1
;SEL 2
;SEL 3

;SEL 0
;SEL 1
;SEL 2
;SEL 3

SETF INPUT03 INPUT13 INPUT23 INPUT33 ;StT SELECTED NIBBLE

SETF IHPUTOO INPUTOI INPUT02 IHPUT03 ; SET ALL INPUTS
INPUTIO INPUTll INPUT12 INPUT13
INPUT20 INPUT21 INPUT22 INPUT23
INPUT30 INPUT31 INPUT32 INPUT33

SETF /INPUT03 /INPUT13 /INPUT23 /IHPUT33 ;CLEAR SELECTED NIBBLE

Page: 1
gggggggggg ggg9999999

INPUTOO XLHHLLLLHH HLLHHHLLHH
INPUTO 1 XLLHHHLHHL LLLHHHLLHH
INPUT02 XLLHHHLLHH HLHHLLLLHH
INPUT03 XLLHHHLLHH HLLHHHLHHL
INPUTIO XLHHLLLLHH HLLHHHLLHH
INPUTll XLLHHHLHHL LLLHHHLLHH
IHPUTl2 XLLHHHLLHH HLHHLLLLHH
INPUT13 XLLHHHLLHH HLLHHHLHHL
INPUT20 XLHHLLLLHH HLLHHHLLHH
INPUT21 XLLHHHLHHL LLLHHHLLHH
INPUT22 XLLHHHLLHH HLHHLLLLHH
IHPUT23 XLLHHHLLHHHLLHHHLHHL
INPUT30 XLHHLLLLHH HLLHHHLLHH
INPUT3l XLLHHHLHHL LLLHHHLLHH
INPUT32 XLLHHHLLHH HLHHLLLLHH
INPUT33 XLLHHHLLHHHLLHHHLHHL
SELECTl LLLLLLLLLL HHHHHHHHHH
SELECTO LLLLLHHHHH LLLLLHHHHH
OUTPUTO XLHHLHLHHL HLHHLHLHHL
OUTPUTI XLHHLHLHHL HLHHLHLHHL
OUTPUT2 XLHHLHLHHL HLHHLHLHHL
OUTPUT3 XLHHLHLHHLHLHHLHLHHL

Monolithic W Memories



CHIP KUX4A PAL18P4
INPUT(O •• 1,0 •• 3) INPUT(2,0 •• 2) GND
INPUT(2,3] INPUT(3,0 •• 2) OUTPUT(O •• 3)

EQUATIONS

OUTPUT[m-O •• 3) - OR (n-O •• 3) (INPUT{.,n] * BIN(n) ( SELECT[O) StLECT[l)

Page: 1
9999999999 9999999999

INPUTOO XlJiHLLLLHH HLlJiHHLlJiH
INPUTOI XLLHHHLHHL LLlJiHHLLHH
INPUT02 XLlJiHHLLHH HLHHLLLLHH
INPUT03 XLLHHHLLHH HLLHHHlJiHL
INPUTI0 XLHHLLLlJiH HLLHHHLLHH
INPUTll XLLHHHLHHL LLLHHHLLHH
INPUT12 XLLHHHLLHH HLHHLLLLHH
INPUT13 XLlJiHHLLHH HLLHHHLHHL
INPUT20 XlJiHLLLLHH HLI1iHHLLHH
INPUT21 XLLHHHUlHL LLLHHHLLHH
INPUT22 XLLHHHLlJiH HLHHLLLLHH
INPUT23 XLLHHHLlJiH HLLHHHLHHL
INPUT30 XLHHLLLLHH HLLHHHLLHH
INPUT31 XLLHHHLHHL LLLHHHLLHH
INPUT32 XLLHHHLLHH HLHHLLLLHH
INPUT33 XLLHHHLLHH HLLHHHLHHL
SELECTI LLLLLLLLLL HHHHHHHHHH
SELECTO LLLLLHHHHH LLLLLHHHHH
OUTPUTO XLHHLHLHHL HLHHLHLHHL
OUTPUTl XLHHLHLKHL HLHHLHLKHL
OUTPUT2 XLHHLHLHHL HLHHLHLHHL
OUTPUT3 XIJiHIJfIJfHL HLHHUfLHHL

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
OATE

4:1 KUX
KUX4A. PDS
A
John Birkner
Monolithic Memories Inc. Santa Clara, CA
1/8/85

The four to one multiplexor routes one of four 4-bit nibbles,
INPUT(O,n] •• INPUT(3,n), to the output, OUTPUT{O) •• OUTPUT(3].
This example illustrates the use of hi9h level macros to
save typing and i.prove accuracy.

TRACE_ON INPUT(O •• 3,0 •• 3] SELECT{O •• 1] OUTPUT(O •• 3]

FOR n:-O TO 3 DO
BEGIN

SETF BIN[n) (SELECT{l) SELECT(O])
SETF /INPUT{O •• 3,0 •• 3)
SETF INPUT[n,O •• 31
SETF INPUT(O •• 3,0 •• 31
SETF /INPUT(n,0 •• 3)

END

SELECT ADDRESS
CLEAR ALL INPUTS
SET SELECTED NIBBLE
SET ALL INPUTS
CLEAR SELECTED NIBBLE

SELECTO_
SELECT1_

INPUTO_
INPUT1_
INPUT2_
INPUT3_

OUTPUTO
OUTPUT1
OUTPUT2
OUTPUT3

Monolithic W Memories



Title
Pattern
Revision
Author
Company
Date

Octal Comparator
OctComp.pds
A
Mehrnaz Hada
Monolithic Memories
1/29/85

;The octal comparator establishes when two a-bit data
;strings (A7-AO) and (B7-BO) are equivalent (EQ=H) or
;equivalent (NE=H).

A7 AO BO Al Bl A2 B2 A3 B3 GNO
M B4 AS B5 EQ NE A6 B6 B7 VCC

EQUATIONS

NE = AO*/BO + IAO* BO ;AO :+ BO
+ Al*/Bl + IAl* Bl ;Al :+ Bl
+ A2*/B2 + IA2* B2 ;A2 :+ B2
+ A3*/B3 + IA3* B3 ;A3 :+ B3
+ A4*/B4 + IA4* B4 ;A4 :+ B4
+ A5*/B5 + IA5* B5 ;A5 :+ B5
+ A6*/B6 + IA6* B6 ;A6 :+ B6
+ A7*/B7 + IA7* B7 ;A7 :+ B7

SIMULATION

TRACE_ON A7 A6 AS M A3 A2 Al AO NE
B7 B6 B5 B4 B3 B2 Bl BO

SETF A7 IA6 IA5 IA4 IA3 IA2 IAI lAC :A7=H, B7-L
IB7 IB6 IB5 IB4 IB3 IB2 IBI IBO

SETF IA7 A6 ;A6=H, B6=L
SETF IA6 AS :A5=H, B5-L
SETF IA5 M :A4=H, B4=L
SETF 1M A3 :A3=H, B3=L
SETF IA3 A2 ;A2=H, B2-L
SETF IA2 Al tAl=H, BI-L
SETF IAI AO ;AO-H, BO-L
SETF IA7 IA6 IA5 IA4 IA3 IA2 IAI IAO ;A7=L, B7-H

B7
SETF IB7 B6 ;A6=L, B6-H
SETF IB6 B5 :A5=L, B5=L
SETF IB5 B4 ;A4=L, B4=H
SETF IB4 B3 ;A3=L, B3=H
SETF IB3 B2 ;A2-L, B2-H
SETF IB2 Bl ;Al=L, BI-H
SETF IBI BO ;AO-L, BO=H
SETF IBO ;Test all L's
SETF A7 A6 AS M A3 A2 Al AO ;Test all H's

B7 B6 B5 B4 B3 B2 Bl BO
SETF IA7 A6 IA5 M IA3 A2 IAI AO ;Test even ones

IB7 B6 IB5 B4 IB3 B2 IBI BO
SETF A7 IA6 AS 1M A3 IA2 Al IAO ;Test odd ones

B7 IB6 B5 IB4 B3 IB2 BIlBO

HLLLLLLL LLLLLLLL H L
LHLLLLLL LLLLLLLL H L
LLHLLLLL LLLLLLLL H L
LLLHLLLL LLLLLLLL H L
LLLLHLLL LLLLLLLL H L
LLLLLHLL LLLLLLLL H L
LLLLLLHL LLLLLLLL H L
LLLLLLLH LLLLLLLL H L
LLLLLLLL HLLLLLLL H L
LLLLLLLL LHLLLLLL H L
LLLLLLLL LLHLLLLL H L
LLLLLLLL LLLHLLLL H L
LLLLLLLL LLLLHLLL H L
LLLLLLLL LLLLLHLL H L
LLLLLLLL LLLLLLHL H L
LLLLLLLL LLLLLLLH H L
LLLLLLLL LLLLLLLL L H
HHHHHHHH HHHHHHHH L H
HLHLHLHL HLHLHLHL L H
LHLHLHLH LHLHLHLH L H

A7-R, B7-L
A6-H, B6-L
AS-H, B5-L
M-H, A5-L
A3-H, BJ-L
A2-H, B2-L
AI-H, SIaL
AC-H, BO-L
A7-L, B7-R
A6-L, 86=H
A5-L, B5-H
A4-L, 84-H
A3-L, 83-H
A2-L, 82-H
AI-L, B1-H
AO-L, BO=H
Test all LiS
Test all H'S
Test even checkerboard
Test odd checkerboard

Page: 1
9999999999 9999999999A7 HLLLLLLLLL LLLLLLLHLH

A6 LHLLLLLLLL LLLLLLLHHL
AS LLHLLLLLLL LLLLLLLHLH
A4 LLLHLLLLLL LLLLLLLHHL
A3 LLLLHLLLLL LLLLLLLHLH
A2 LLLLLHLLLL LLLLLLLHHL
Al LLLLLLHLLL LLLLLLLHLH
AO LLLLLLLHLL LLLLLLLHHL
NE HHHHHHHHHH HHHHHHLLLL
B7 LLLLLLLLHL LLLLLLLHLH
B6 LLLLLLLLLH LLLLLLLHHL
B5 LLLLLLLLLL HLLLLLLHLH
B4 LLLLLLLLLL LHLLLLLHHL
B3 LLLLLLLLLL LLHLLLLHLH
B2 LLLLLLLLLL LLLHLLLHHL
Bl LLLLLLLLLL LLLLHLLHLH
BO LLLLLLLLLL LLLLLHLHHL

Logic Symbol
16C1

A7 vcc

AO 87

80 86

A1 A6

81 NE

A2 EQ

B2 85

A3 AS

83 84

GND A4



.-..•_ ......•.....••...0."....•~ a'.un
Title 3to8 Dmux
Pattern 3toBDmuX.pds
Revision A
Author Hehrnaz Hada
company Monolithic Memories Inc., Santa Clara, CA
Date 1/29/85

iThe 3-to-a demultiplexer with control storage provides a
;conventional a-bit demux function combined with control
1storage functions:load true, load complement, hold, toggle,
;polarity, clear and preset. Five inputs(/LD,/CLR,/PR,POL,
;TOG) select one of six operations. The six operations are
isummarized in the following operations table:

: Control Functions polarity Inputs Outputs
:/OC CLl( /CLR /PR /LD POL TOG ABC Q7-QO Operation
;------------------------------------------------------ ----

H X X X X X X X Z HI-Z
L C L X X X X X L Clear
LC HLX X X X H PRESET
L C H H L H X I MUX Load true
L C H H L L X I /KUX Load COMP
L C H H H X L X Q Hold

_:_-_:_---~---~---~----~----~----~------~~---_:~:_~~:~:~~:-

CLl( /CLR /PR A a C /LO POL TOG GND
/OC Q7 Q6 Q5 Q4 Q3 Q2 Ql QO VCC

EQUATIONS

/00:- CLR
+ /PR* LO*/POL*/C*/B*/A
+ /PR* LO* POL* A
+ /PR* LO* POL* a
+ /PR* LO* POL* C
+ /PR*/LO*/TOG*/OO
+ /PR*/LO* TOG* 00

/Ql:- CLR
+ /PR* LO* /POL* /c* /B* A
+ /PR* LO* POL* /A
+ /PR* LO* POL* a
+ /PR* LO* POL* C
+ /PR*/LO*/TOG*/Ql
+ /PR* /LO* TOG* Ql

/Q2 :- CLR
+ /PR* LO*/POL*/C* a*/A
+ /PR* LO* POL* A
+ /PR* LO* POL* /8
+ /PR* LO* POL* C
+ /PR*/LO*/TOG*/02
+ /PR*/LD* TOG* Q2

:- CLR
+ /PR* LO*/POL*/C* 8* A
+ /PR* LO* POL* /A
+ /PRft LOft POLft /8
+ /PR* LD* POL* C
+ /PR*/LO*/TOG*/Q3
+ /PR*/LO* TOG* Q3

/Q4 :- CLR
+ /PR* LO*/POL* C*/8*/A
+ /PR* LO* POL* A
+ /PR* LO* POL*
+ /PR* LO* POL*/C
+ /PR*/LO*/TOG*/04
+ /PR* /LO* TOG* 04

/Q5:- CLR
+ /PR* LD* /POL* c* /\\* A
+ /PR* LO* POL* /A
+ /PR* LO* POL* 8
+ /PR* LO* POL*/C
+ /PR*/LO*/TOG*/05
+ /PR*/LO* TOG* Q5

/Q6 :- CLR
+ /PR* LO*/POL* c* 8*/A
+ /PR* LO* POL* A
+ /PR* LO* POL* /8
+ /PR* LO* POL*/C
+ /PR*/LO*/TOG*/06
+ /PR*/LO* TOG* Q6

/07 :- CLR
+ /PR* LO*/POL* c* 8* A
+ /PR* LO* POL* /A
+ /PR* LO* POL* /8
+ /PR* LO* POL*/C
+ /PR*/LO*/TOG*/Q7
+ /PR*/LO* TOG* Q7

SIMULATION

iClear QO
iOecode 000
iLoad true
:Load true
:Load true
:Hold
:Toqgle polarity

:Clear 01
:Oecode 001
:Load true
:Load true
:Load true
:Hold
:Toggle polarity

clear Q2
Oecode 010
Load true
Load true
Load true
Hold
Toggle polarity

Clear Q3
oecode all
Load true
Load true
Load true
Hold
Toggle polarity

Clear 04
Decode 100
Load true
Load true
Load true
Hold
Toggle polarity

Clear Q5
Decode 101
Load true
Load true
Load true
Hold
Toggle polarity

Clear 06
Decode 110
Load true
Load true
Load true
Hold
Toggle polarity

Clear Q7
Decode III
Load true
Load true
Load true
Hold
Toggle polarity

TRACE_ON /OC /CLR /PR /LO POL TOG C 8 A
Q7 Q6 Q5 Q4 Q3 Q2 Ql QO

SETF OC CLR PR LO POL /TOG ;Clear
CLOCKF CLK
SETF /CLR :Preset
CLOCKF CLl(

SETF /PR /C /B /A :Load a
CLOCKF CLl(
SETF A ;Load 1
CLOCKF CLK
SETF B /A ;Load 2
CLOCKF CLK
SETF A 1Load 3
CLOCKF CLl(
SETF /LO :Hold
SETF TOG ;Toggle polarity
CLOCKF CLK
CLOCKF CLK :Toggle polarity

SETF /POL LD /C /8 /A iLoad a complement
CLOCKF CLK
SETF A : Load I complement
CLOCKF CLl(
SETF /OC iTest HI-Z
CLOCKF CLl(

; Function Table for PAUSHl

; /OC CLK /CLR /PR /LD POL TOG C B A 07 Q6 Q5 Q4 Q3 Q2 Ql QO

: Control Functions polarity Input output
,/oc CLK /CLR /PR /LD POL TOG CBA Q7----QO Comments
i --- ---------------- ------ ------ ---------------------------

L C L L L H L XXX LLLLLLLL Clear
L C H L L H L XXX HBHHHHHH PRESET
L C H H L H X LLL LLLLLLLH Load a
L C H H L H X LLH LLLLLLHL Load 1
L C H H L H X IJIL LLLLLHLL Load 2
L C H H L H X LHH LLLLHLLL Load 3
L C H H L H X HLL LLLHLLLL Load 4
L C H H L H X HIJI LLHLLLLL Load 5
L C H H L H X HBL LHLLLLLL Load 6
L C H H L H X HHB HLLLLLLL Load 7
L C H H H X L XXX HLLLLLLL Hold 7
L C H H H X H XXX LHHHHBHB Hold
L C H H H X H XXX HLLLLLLL Hold
L C H H L L X LLL HHHHHHHL Load a
L C H H L L X LIJI HHHHHHLH Load 1
L C H H L L X IJIL HHHHHUlH Load 2
L C H H L L X LHH HHHHIJIHH Load 3
L C H H L L X HLL HHBIJIHHB Load 4

L C H H L L X HIJI HBIJIHHBH Load 5

L C H H L L X HBL HLHHHHBH Load 6

L C H H L L X HHB IJIHHHHHH Load 7

L C H H H X L XXX IJIHHHHHH Hold 7

L C H H H X H XXX HLLLLLLL Hold

L C H H H X H XXX IJIHHHHHH Hold

H X X X X X X XXX ZZZZZZZZ Test HI-Z

Page:
9 cgcgcgc gcgcgc cgC gcg c

/OC LLLLLLLLLL LLLLLLLLLL LIJiHHHH
/ CLR LLLIJiHHHHH HHHHHHHHHH HHHHHHH
/PR LLLLLIJiHHH HHHHHHHHHH HHHHHHH
/ LO LLLLLLLLLL LLLLHHHHLL LLLLLLL

POL HHHHHHHHHH HHHHHHHHLL LLLLLLL
TOG LLLLLLLLLL LLLLHHHHHH HHHHHHH
C XXXXXXLLLL LLLLLLLLLL LLLLLLL
B XXXXXXLLLL HHHHHHHHLL LLLLLLL
A XXXXXXLIJiH LIJiHHHHHLL HHHHHHH
Q7 XXXLIJIHLLL LLLLLHHLLH HHHZZZZ
Q6 XXXLIJIHLLL LLLLIJiHLUi HHHZZZZ
05 XXXLUiHLLL LLLLIJiHLIJi HHHZZZZ
Q4 XXXLIJiHLLL LLLLIJiHLIJI HHHZZZZ
Q3 XXXLIJiHLLL LLIJIHLIJIHH HHHZZZZ
Q2 XXXLIJiHLLL IJiHLLHHLIJI HHHZZZZ
Ql XXXLIJfHLLH HLLLUiHLIJi HLLZZZZ
QO XXXLIJiHHHL LLLLIJiHLLL IJiHZZZZ



Title Octal Latch
Pattern 8latch.pds
Revision A
Author Mehrnaz Hada
Company Monolithic Memories Inc. Santa Clara, CA
Date 1/15/85

/LATCHO 01 DO QO Ql VCCI Q2 Q3 03 02 CLRO GNO
/LATCHI 06 07 Q7 Q6 VCC2 Q5 Q4 04 05 CLRI VCC3

EQUATIONS

00 - DO • /CLRO * LATCRO ; Load
+ DO • /CLRO • 00 ;Transition
+ 00 • /CLRO * /LATCHO ;Hold

01 • Dl * /CLRO LATCHO ; Load
+ Dl * /CLRO 01 ;Transition
+ 01 * /CLRO * /LATCHO ;Hold

02 - D2 * /CLRO LATCH a ; Load
+ D2 * /CLRO 02 ;Transition
+ 02 * /CLRO * /LATCHO ;Hold

03 - D3 * /CLRO * LATCHO ; Load
+ D3 * /CLRO * Q3 ;Transition
+ 03 * /CLRO, * /LATCHO ;Rold

04 - D4 * /CLRl * LATCH1 ; Load
+ D4 * /CLR1 • 04 ; Transition
+ 04 * /CLRl * /LATCH1 ;Ho1d

05 • D5 /CLR1 * LATCH I ; Load
+ D5 /CLRI • 05 ;Transition
+ 05 /CLRI * /LATCH1 :Ho1d

06 - D6 • /CLRI LATCH 1 ; Load
+ D6 * /CLRI 06 ;Transtion
+ 06 * /CLRI /LATCHI ;Hold

01 - D1 * /CLRI LATCH 1 ; Load
+ D1 * /CLR1 01 :Transition
+ 01 * /CLR1 /LATCHI ;Hold

SIMULATION

TRACE_ON CLRO LATCHO00 01 02 03 CLRI LATCH 1 Q4 Q5 06 01

SBTF CLRO LATCHO DO 01 02 03 04 05 06 07 VCC1 VCC2 VCC3

SETF /CLRO /CLRI

SETF LATCHO LATCHI

CHECK QO 01 Q2 Q3 Q4 Q5 Q6 Q7

SETF /LATCH1 DO /01 /02 03

SETF /LATCHO LATCH 1 /04 /05 /06 07

SETF CLRO CLRI

SETF /CLRO /CLR1 /LATCHO /LATCH1

SETF CLRO ;Clear QO,01,Q2,03

;Clear Q4 ,05, Q6, Q7

The octal latch is an 8-bit latch with load, hold and clear
capability. Clear sets all outputs to low and overrides
hold. Load operation loads inputs (00-07) into the latch.
The hold operation holds the previous values of (QO-Q7).

CLRO
LATCHO
00
01
02
03
CLRI
LATCH I
04
05
06
01

ggggggggg
HHLLLHLHH
HHHHLLLLL
LLHHHLHLL
LLHLLLLLL
LLHLLLLLL
LLHHHLHLL
XHLLLHLLH
XHHLHHLLL
XLHHLLLLL
XLHHLLLLL
XLHHLLLLL
XLHHHLHHL

Logic Symbol

LATCHO VCC3

01 CLR1

DO 05

00 04

01 04

VCC1 05

02 VCC2

03 06

03 07

02 07

CLRO 06

GNo LATCH1



Title Basic Flip Flops
Pattern Fl ipFlop. pds
Revision A
Author Vincent Coli
Company Monolithic Memories Inc., Santa Clara, CA
Date 2/28/85

CHIP FlipFlop PAL16RP8

CLK J K T PR Ct.R 0 S R GNO
IOC ISRC ISRT IOC lOT ITC ITT IJKC IJKT VCC

EQUATIONS

JKT :- J*/JK!r*/crn
+ IK* JK!r* Icrn
+ PR

JKC ;- IJ* K */PR
+ IJ*/JK!r*/PR
+ K* JK!r*/PR
+ CLR

TT :- T*/TT*/CLR
+ IT* TT* ICLR
+ PR

TC ;- IT*/TT*/CLR
+ T* TT*/PR
+ CLR

OT D*/CLR
+ PR

DC :- IO*/PR
+ CLR

SRT :- S* ICLR
+ IR* SRT* ICLR
+ PR

SRC ;- IS* R */PR
+ IS*/SRT*/PR
+ CLR

;JX Flio-Flop
: (JKC - IQ)
;Preset Q

;T Flip-Flop
:(TT - Q)
1Preset Q

;T Flip-Flop
: (TC - IQ)
;Clear IQ

:0 Flip-Flop
;Preset Q

;0 Flip-Flop
;Clear IQ

:Set-Reset Flip-Flop
: (SRT - Q)
:Preset Q

;Set-Reset Flip-Flop
: (SRC - IQ)
;Clear IQ

SIMULATION

TRACE_ON 10C PR CLR J X Jl<T T TT 0 DT S R SRT

SETF OC IPR CLR
CLOCXF
SETF ICLR IJ IK
CLOCKF
SETF K
CLOCKF
SETF J
CLOcl(F
SETF IX
CLOCKF
SETF IJ
CLOCKF
SETF K
CLOCKF
SETF PR
CLOCKF
SETF IPR J K
CLOCKF
SETF IK
CLOCKF

SETF CLR
CLOCXF
SETF ICLR IT
CLOCKF
SETF T
CLOCKF
SETF IT
CLOCKF

Toggle

Toggle

SETF CLR
CLOCKF
SETF 10
CLOCKF
SETF 0
CLOCKF
SETF 10
CLOCKF

SETF CLR
CLOCKF
SETF ICLR IS IR
CLOCKF
SETF S
CLOCKF
SETF IS R
CLOCKF
SETF IS R
CLOCKF
SETF IOC
CLOCKF

'1 cgcgcgcgcgcg cgcgcg cgcgcgc
10C LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL

PR LLLLLLLLLL LLLLLLLLLL LLHHHLLLLL LLLLLLLLLL
CLR HHHHLLLLLL LLLLLLLLLL T T T T T T T T T T LHHHLLLLLL
J XXXXLLLLLL llHHHHHLLLL LLLLLIIIIIlIlII HIIIIIIIIHIIIII
K XXXXLLLHHH HHHLLLLLLH HHHHHHHJfLL LLLLLLLLLL
JKT XXXLLLLLLL LLHHHHHHHH HLLLHHHLLL HmfLLLHHHH
T XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXLLLHHH
TT XXXLLLXXXX XXXXXXXXXX XXXXHHHXXX XXXLLLLLIJI
o XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
DT XXXLLLXXXX XXXXXXXXXX XXXXHHHXXX XXXLLLXXXX
S XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
R XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
SRT XXXLLLXXXX XXXXXXXXXX XXXXHHHXXX XXXLLLXXXX

Page: 2
9 cg cg cg cg cgcg c 9 cg cgcg

10C LLLLLLLLLL LLLLLLLLLL LLLLLLLIJfH
PR LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
CLR LLlJIHHHHHH HHHHHHHLLL LLLLLLLLLL
J HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
K LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
JKT HHHHHLLLLL LLLLLLLLLH HHHHHHHHHZ
T LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
TT HHHHHLLLLL LLLLLLLLLL LLLLLLLLLZ
o XXXXXXLLLH HHLLLLLLLL LLLLLLLLLL
OT XXXXXLLLLL LLLLLLLLLL LLLLLLLLLZ
S XXXXXXXXXX XXXXXXXLLL HHHLLLLLLL
R XXXXXXXXXX XXXXXXXLLL LLlJIHHHHHH
SRT XXXXXLLLLL LLLLLLLLLL LLHHHLLLLZ

Logic Symbol

ClK VCC

JKT

K JKC

T TT

PR TC

ClR DT

D DC

S SRT

R SRC

GND



Title 9BitRegister
Pattern 9BitReg.pds
Revision A
Author Vincent Coli/Mehrnaz Hada
Company Monolithic Memories Inc., Santa Clara, CA
Date 1/30/85

:This is a design of a 9-bit register with parallel load
iand hold capabilities. The operations of this register are
:summarized in the following operations table:

/00 := /00* LO
+ /QO*/LO

/01 :"'" /01* LO
+ /Ql*/LO

/02 :"'" /02* LD
+ /02"/LO

/03 := /03* LO
+ /Q3*/LD

/04 := /04* LO
+ /Q4*/LO

/05 := /05* LO
+ /Q5*/LD

/06 ::'" /06* LO
+ /Q6*/LO

/07 :"'" /07* LO
+ /Q7*/LD

/08 :"" /08* LO
+ /Q8*/LD

SETF OC LD /08 /07 /06 /05 /04 /03
/02 /01 /00

CLOCKF CLK

Data In
DDDOODDDDD
9876543210

Data Out
0000000000
9876543210

Load all zeros
Hold all zeros
Load all ones
Hold all ones
Load even checkerboard
Hold even checkerboard
Load odd checkerboard
Hold odd checkerboard
Test HI-Z

LLLLLLLLLL
XXXXXXXXXX
HHHHHHHHHH
XXXXXXXXXX
HLllLll LllLllL
XXXXXXXXXX
LllLllLll LllLll
XXXXXXXXXX
XXXXXXXXXX

LLLLLLLLLL
LLLLLLLLLL
HHHHHHHHHH
HHHHHHHHHH
HutLHututL
HutLHutLHL
utLHLHutLH
LHutLHutut
ZZZZZZZZZZ

Page: I
9 cgcgcgc gcgcgcgcg c

/OC LLLLLLLLLL LLLLLLLLllH HHH
eLK XXHLHLHLHL HLHLHLHLLL HHL

/LO LLLLllHLLllH LLllHLLllHHH HHH
08 LLLLLLHHHH LLLLHHHHHH HHH
07 LLLLLLllHHH HHHHLLLLLL LLL
D6 LLLLLlliHHH LLLlliHHHHH HHH
05 LLLLLlliHHH HHHHLLLLLL LLL
04 LLLLLLHHHH LLLlliHHHHH HHH
D3 LLLLLLHHHH HHHHLLLLLL LLL
02 LLLLLUlHHH LLLLHHHHHH HHH
01 LLLLLLHHHH HHHHLLLLLL LLL
DO LLLLLLHHHH LLLLHHHHHH HHH
Q8 XXXLLLLllHH HLLLLllHHHZ ZZZ
Q7 XXXLLLLHHH HHHHHLLLLZ ZZZ
Q6 XXXLLLLHHH HLLLlliHHHZ ZZZ
Q5 XXXLLLlliHH HHHHHLLLLZ ZZZ
Q4 XXXLLLLllHH HLLLLllHHHZ ZZZ
Q 3 XXXLLLLllHH HHHHHLLLLZ ZZZ
Q2 XXXLLLLllHH HLLLLllHHHZ ZZZ
Q1 XXXLLLLllHH HHHHHLLLLZ ZZZ
QO XXXLLLLllHH HLLLLllHHHZ ZZZ

ClK VCC

DO 00

D1 01

D2 02

D3 03

D4 04

D5 05

D6 06

D7 07

D8 08

Ui NC

GND DC

Monolithic miD Memories



HeVls1.0n A
Author Vincent Coli/Mehrnaz Hada
Company Monolithic Memories Inc., Santa Clara, CA
Oate 1/28/85

iThe 10-bit register loads the\iata (09-00) on the rising
iedge of the clock(CLK) into the register(Q9-QO). The data
i is held in the register until the next posiyive edge of
ithe clock.

IOC CLK 09-00 Q9-QO operation
-~--T~-- - --~-- ----;------~i:;------

LC DO Load
L L X Q Hold

CHIP 10BitReg PAL20XIO

CLK DO 01 02 03 04 05 06 07 08 09 GNo
/OC 09 08 07 06 05 04 03 02 01 00 VCC

EQUATIONS

/00 :- /00

/01 := /01

/02 :- /02

/03 :- /03

/04 :- /04

/05 :- /05

/06 :- /06

/07 := /07

/08 :- /08

/09 :- /09

SIMULATION

TRACEON /OC CLK 09 08 07 06 05 04 03 02 01 00
- 09 08 07 06 05 04 03 02 01 DO

SETF OC 109 108 /07 /06 /05 /04 /03 /02 /01 /00
CLOCKF CLK ;Load all zeros

SETF 09 08 07 06 05 04 03 02 Dl DO
CLOCKF CLK iLoad all

SETF 09 108 07 /06 05 /04 03 /02 01 /00
CLOCKF CLK

SETF 109 08 107 06 IDS 04 103 02 101 DO
CLOCKF CLK

SETF IOC
CLOCKF CLK

:
;Control
,/oc CLK

Data In
DDDDDDDDDD
9876543210

Data Out
OOQQOOOOOO
9876543210

L C LLLLLLLLLL LLLLLLLLLL Load all zeros
L L XXXXXXXXXX LLLLLLLLLL Hold all zeros
L C HHHHHHHHHH HHHHHHHHHH Load all ones
L L XXXXXXXXXX HHHHHHHHHH Hold all ones
L C HLHLHLHLHL HLHUiLHLHL Load even checkerboard
L L XXXXXXXXXX HLHLHLHLHL Hold even checkerboard
L C LHLHLHLHLH UlUlUlUlUl Load odd checkerboard
L L XXXXXXXXXX LHLHLHLHLH Hold odd checkerboard
H X XXXXXXXXXX ZZZZZZZZZZ Test HI-Z

9 cgcg cgcg c
IOC LLLLLLLLLL LLLLLHHHHH

eLK XXHHLLHLUi HLLHLLLHHL
Q9 XXXLLLLHHH HHHHLLZZZZ
08 XXXLLLUlHHLLLUlHZZZZ
07 XXXLLLUlHHHHHHLLZZZZ
Q6 XXXLLLLHHH LLLLHHZZZZ
Q5 XXXLLLLHHH HHHHLLZZZZ
Q4 XXXLLLLHHH LLLLHHZZZZ
Q3 XXXLLLLHHH HHHHLLZZZZ
Q2 XXXLLLLHHH LLLLHHZZZZ
Q1 XXXLLLLHHH HHHHLLZZZZ
QO XXXLLLLHHH LLLLHHZZZZ
09 LLLLLHHHHH HHLLLLLLLL
08 LLLLLHHHLL LLHHHHHHHH
07 LLLLLHHHHH HHLLLLLLLL
06 LLLLLHHHLL LLHHHHHHHH
05 LLLLLHHHHH HHLLLLLLLL
04 LLLLLHHHLL LLHHHHHHHH
D3 LLLLLHHHHH HHLLLLLLLL
D2 LLLLLHHHLL LLHHHHHHHH
01 LLLLLHHHHH HHLLLLLLLL
DO LLLLLHHHLL LIJiHHHHHHH

eLK vee

DO 00

01 01

02 02

03 03

04 04

05 05

06 06

07 07

08 08

09 09

GNO DC



Pattern
Revision
Author
Company
Date

Barrel.pds
A
Mehrnaz Hada
Monolithic Memories Inc. Santa Clara, CA
1/15/85

iThe 16-bit barrel shifter will shift 16 bits of data
; (015-00) a number of locations into the output pins,
:specified by the binary encoded input. A compacted
:equation can be used to specify this design. It can be
:specified as following:

;0[J:0 •• 15) :-
OR[K:O •. 15 J(D( (J+K) - (J+K) /16) *16 J *BIH[K, 1:3 •• 0) S (I) )

;Inputs are shown by D. si are shift amount inputs and
;OJ are outputs. 16 product terms in each output pair
;are directed to one output; thus only 16 out of 32
:output pins are used.

07 06 05 04 D3 D2 Dl DOIPLI IPSI GNOCLK1
lOCI 00 NC01 NC02 NC03 NC04 NC05 NC06
NC07 NC IOC2 CLK2VCCIPS2 IPL2 NCNCNC
NCNCSO 51 52 53 NCNCNCNCNCNCNC
/PL3 /PS3 GHD CLK3 /OC3 HC 08 HC O' HC 010
NC011 NC012 NC013 NC014 NC015 IOC4
CLK4VCCIPS4 IPL4 015 014 013 012 011 010
09 08

00 := /S3
+ 153
+ 153
+ /53
+ /53
+ /53
+ 153
+ /S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3

01 :: /S3
+ 153
+ /53
+ 153
+ 153
+ /53
+ /53
+ 153
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3

02 := /S3
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ 53 '"

03 :- /S3
+ /53
+ /S3
+ /53
+ /53
+ /53 '"
+ /53 '"
+ /53 '"
+ S3
+ S3
+ S3
+ S3

/52 '" /51 '" /50 '" DO
/52 '" /51" SO '" 01
/52 '" 51 '" /50 '" 02
/52" 51 '" SO * 03
52 .• /51 .• /50 '" 04
52 '" /51 '" SO '" 05
52 '" 51 '" /50 * 06
52" 51" SO '" 07

152 .• /51 '" /50 '" 08
152 '" /51 '" SO" 09
152 '" 51 '" /50 .• 010
152 '" 51 * SO '" 011
52 '" /51 '" /50 '" 012
52 '* /51 '" SO '* 013
52 '" 51 '* /50 '* 014
52 '* 51 '" 50 '* 015

'" /52 '* /51 '* /50 '" 01
'* /52 '" 151 '* SO '* 02
'* /52 '" 51 '" /50 '" 03
'* /52 '* 51 '* 50 '" 04
'* 52 '" /51 '" ISO .• 05
'* 52 '" 151 '" SO '" 06
'* 52 '" 51 '* ISO '" 07
'" 52 * 51 * SO '* 08
'* /52 '* /51 '* ISO '* 09
'* 152 '* /51 * SO '* 010
'* 152 '* 51 '* ISO * 011
'* /52 '* 51 * SO '* 012
* 52 '* /51 '* /50 '* D13
'* 52 '* /51 '* SO '* 014
'* 52 '* 51 '* /50 '* 015
* 52 '* 51 '* SO '* DO

'* /52
'* /52
* /52
'* 152
* S2
* S2
* S2
* S2
'* /52
'* /52
* /52

/S2
S2
S2
S2
S2

/SI
/SI

SI
SI

/SI
/SI

SI
* SI
'" 151
'* /51
* SI
* SI
'* /51
'* /51
* SI
* SI

/50 '* 02
SO '* 03

* /50 '* 04
* SO '* 05
'* /50 '* 06
'* SO '* 07
'* /50 * 08
'* SO '* 09
'* /50 '* 010
'* SO '* 011
'* /50 '* 012
'* SO '* 013
'* /50 • 014
'* SO '* 015
'" /50 '* DO
* SO '" 01

/S2
/S2
/S2
/S2

S2
S2
S2
S2 *

/S2
/S2
/S2
/S2

'* /50
* SO
'* /50
* SO
'* /50
* SO
'* /50
* SO

ISO
SO

ISO
SO

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces

04 := /S3
+ /S3
+ /S3
+ /S3
+ 153
+ 153
+ /53
+ /53
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3

53 * 52 '" 151 '* SO
53 52 '" 51" ISO
53 52. 51. SO

/S2
/S2

'* /S2
'* 152
* S2
* S2
* S2
* S2
'* /52
'* 152
'* /52
* /52
* S2
* S2
* S2
* S2

Q5 :- /S3 * /S2 * /SI
+ 153 '* 152 '* /51
+ 153 '* 152 '* 51
+ /53. /52 '* 51
+ /53 '* 52 '* /51
+ /53 '* S2 '* /51
+ /53. S2 '* 51
+ /53. 52 * 51
+ 53 '* /52 • /51
+ 53· /52 * 151
+ 53 '* /52 '* 51
+ 53 '* /52 '* Sl
+ 53 '* 52 * /51
+ 53 '* 52 '* /51
+ 53 '* 52 '" 51
+ 53 '* 52" 51

Q6 := /53 .• /52 '* /51
+ /53" /52 .• /51
+ /53 '" /52 '* 51
+ /53" /52 51
+ /53 '" 52 /51
+ /53" 52 /51
+ /53" 52 '* 51
+ 153" 52 51
+ 53" /52 /51
+ 53 '* /52 /51
+ 53" /52 51
+ 53" /52 51
+ 53 '* 52 /51
+ 53 52 /51
+ 53 52 51
+ 53 52 51

Q7 := /S3 /S2
+ /S3 /S2
+ 153" /52
+ /53" 152
+ /53" 52
+ 153" S2
+ /53" 52
+ /53" 52
+ 53 '* 152
+ 53" /52
+ 53 '* /52
+ 53 '* /52
+ 53 '* 52
+ 53" 52
+ 53" 52
+ 53 '* 52

Q8 :- /S3
+ /53
+ /S3
+ /53
+ 153
+ /S3
+ /S3
+ /S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3
+ S3

O' := /S3
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53

.• 152 .• 151

.• /52 .• /51

.• /52" 51
'* /52" 51
.• 52 '* /51
.• 52" /51
.• 52" 51
'* 52 '* 51
.• /52 '* /51
.• /52 .• /51
.• 152" 51
'" /52" 51
.• 52 '" /51
'* 52" /51
'* 52 '" 51
'" 52" 51

'" /52 '" /51
/52 .• /51
/52" 51

.• /52 '" 51
'* 52 '* /51
'* 52 '* /51
.• 52 '* 51

/SI
/SI

* SI
* SI
* /SI
* /SI
* SI
* SI
.• /51
.• 151

* SI
* SI
* 151
.• 151
* SI
• SI

/50 .•
SO •

.• /50 '*

.• SO '*
'* /50 .•
'* SO"
'* ISO .•
'* SO '*
'* /50 *
.• SO"
.• ISO '*
* SO"
.• ISO .•
* SO '*
* /50 '*
.• SO '*

'* /50 05
'* SO 06
'* /50 D7
.• SO DS
.• ISO 09
'* SO 010
'* /50 011
* SO D12
* ISO 013
• SO 014
* /50 D15
* SO DO
'* /50 01
* SO 02
* /50 D3
'* SO 04

.• /50 '* D6
'* SO" 07
.• /50 .• 08
.• SO" 09
.• /50 .• 010
'* SO" 011
.• /50 '* 012
'* SO" 013
.• /50 '* D14
'* SO '* 015
'* /50 '* DO
'* SO '* 01
'* /50 '* 02
* SO '* D3
* /50 '* 04
'* SO '* 05

/SI
/SI

SI

• SI'* /51
'* ISI

• SI
• SI'* /51
'* /51
• SI
• SI
'* /51
'* /51
• SI
• SI

ISO 07
SO D8

ISO D.
SO 010

'* /50 Dl1
'* SO 012
'* ISO 013
'* SO D14
'* /50 015
'* SO DO
'* /50 Dl
'* SO 02
'* /50 D3
'* SO 04
'* ISO 05
'* SO D6

'* ISO

• SO'* /50
• SO
'* /50

• SO'* /50
• SO'* /50

• SO'* /50
• SO'* /50

• SO'* ISO
.• SO '*

• 08

D'
010
011
012
013
014
015
DO
01
02
03
04
05
06
07

'* ISO 09
'* SO 010
'* /50 011
'* SO 012
'* /50 013
'* SO '* 014
'* /50 '* 015

Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shi ft 5 spaces
Shift 6 spaces



QI0 : -/53 * /52
+ /53 * /52
+ /53 * /52
+ /53 * /52
+ /S3 * 52
+ /53 * 52
+ /53 * S2
+ /53 * 52
+ 53 * /52
+ 53 * /52
+ 53 * /52
+ 53 * /52
+ 53 * 52
+ 53 * S2
+ 53 * 52
+ 53 * S2

011 :-/53
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53

012 :=/53
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53

013 :=/53
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53

014 :=/53
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ /53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53

015 :-/53
+ /53
+ /53
+ /53

+ /53 *
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53

52
/52
/52
/52

* /S2
• 52
• 52
• 52
• 52

/52
/52

* /52
* /52

• 52
• 52
• 52
• 52* /52
* /52
* /52
* /52
* 52
• 52
• 52
• 52

/52 * /51 * /50
/52 • /51 * SO
/52 * 51 * /50

* /52 * 51 * SO
52 * /51 * /50
52 * /51 * SO
52 * 51 * /50
52 * 51 * SO

* /52 * /51 * /50
* /52 * /51 * SO
* /52 * 51 * /50
* /52 * 51 * SO
* 52 * /51 * /50
* 52 * /51 * SO
* 52 * 51 * /50
* 52 * 51 * SO

* /52
* /52
* /52
* /52
• 52
• 52* 52
• 52* /52
* /52
* /52
* /52
• 52
• 52
• 52
• 52

/52 * /51 * /50
/52 * /51 * SO
/52 * 51 * /50
/52 * 51 * SO

• 51* /51
* /51
• 51
• 51* /51
* /51
• 51
• 51

/51
/51

51
51

/51
/51

51
51

/51
/51
51
51

/51

• /51
• 51
• 51

* /51
* /51
• 51
• 51* /51
* /51

• 51
• 51* /51
* /51
• 51
• 51* /51
* /51
• 51
• 51

/51 /50 *
/51 50

51 * /50
51 * SO

* /51 * /50
* /51 * SO
• 51 * /50
* 51 * SO
* /51 * /50
* /51 * SO
* 51 * /50
• 51 * SO
* /51 • /50
* /51 * SO
* 51 * /50
• 51. SO

/51
/51

51
* 51
* /51
• /51
• 51
• 51* /51
• /51
• 51
• 51* /51

/51
51
51

• 50* /50

• 50* /50

• SO* /50

• SO* /50

• 50

/50
50

/50
50

/50
50

/50
50

/50
50

/50
50

/50
50

* /50

• 50

* /50

• 50* /50
* 50
* /50

• 50* /50

• 50* /50

• 50* /50

• 50* ISO

• 50* /50
• 50

/50
50

/50
50

/50

• 50* /50

• 50* /50
• 50* /50

• 50
• /50
• 50* /50

• SO

Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shi ft 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
5hi ft 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 Spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces
Shift 4 spaces
Shift 5 spaces
Shift 6 spaces
Shift 7 spaces
Shift 8 spaces
Shift 9 spaces
Shift 10 spaces
Shift 11 spaces
Shift 12 spaces
Shift 13 spaces
Shift 14 spaces
Shift 15 spaces

No shift
Shift 1 space
Shift 2 spaces
Shift 3 spaces

+ /53
+ /53
+ /53
+ /53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53
+ 53

5hitt
5hitt
5hitt
5hitt
5hitt
5hitt
5hitt
5hitt
5hitt
5hitt
5hitt
5hitt

* /51 * /50
* /51 * SO
* 51 * /50
* 51 * SO
* /51 * /50
* /51 * SO
* 51 * /50
* 51 * SO
* /51 * /50
* /51 * SO
* 51 * /50
* 51 * SO

52
52
52
52

/52
/52

* /52
* /52

• 52
• 52
• 52* 52

TRACE_ON CLKI CLK2 CLK3 CLK4 OCI OC2 OC3 OC4
PLI PL2 PL3 PL4 PSI P52 PS3 PS4 53
52 51 SO DO 01 02 03 04 05 06 07 08
09 010 011 012 013 014 015 QO Ql Q2
03 04 05 06 07 08 09 010 011 012 013
014 015

SETF OCI OC2 OC3 OC4 /Psl /PS2 /PS3 /PS4
/PLl /PL2 /PL3 /PL4 /53 /52 /51 /50 00
/01 /02 /03 /04 /05 /06 /07 /08 /09 /010
/011 /012 /013 /014 /015

;C1oclt

;Shift 1

4 spaces
5 spaces
6 spaces
7 spaces
8 spaces
9 spaces
10 spaces
11 spaces
12 spaces
13 spaces
14 spaces
15 spaces

;The 16-bit barrel shitter will shitt 16 bits ot data
;(015-00) a number of locations into the output pins, as
;specified by the binary encoded input. A compacted
;equation can be used to specify this design. It can be
:specitied as following:
;Q[J=O •• 15) :-
; OR[K=O•• 15) (D[ (J+K) - «J+K)/16) *16) *BIN[K, I-3 •• 0)5 (I) }
;
;Inputs are shown by D. Si are shift amount inputs and
;Qj are outputs. 16 product terms in each output pair
;are directed to one output: thus only 16 out ot 32
;output pins are used.



TITLE
PATTERN
REVISION
AUTHOR
COKPANY
DATE

Hi-BIT ADDRESSABLE REGISTER
ADREGHi. PDS
A
John Birkn.r
Xonolithic X_ori •• Inc. Santa Clara, CA
2/11/85

+ /A3*Q14
+ /1.0* 1.1* 1.2* A3*DATA

015 :- /AO *015
+ /A1 *015
+ /A2 *015
+ /A3*015
+ AO* A1* 1.2* A3*DATA

:ho1d
:hold
;hold
;hold
;load

CHI.P ADREG16 PAL32R16
00 Ql Q2 03 /E1 HC NC AO Al VCC A2 A3 DATA HC /PRLD2 CLK2
04 Q5 Q6 Q7 Q8 09 010 011 /£2 NC HC NC HC GND NC NC NC NC /PRLD1 CLK1
Q12 013 Q14 Q15

EQUATIONS

QO AO "QO :ho1d
+ A! "QO :hold
+ 1.2 "QO ;hold
+ "A3*QO ;ho1d
+ /AO* /Al */1.2 */1.3 *DATA ;load

Q1 :- /AO *Ql ;hold
+ A! "Q1 ;hold
+ 1.2 "Q1 :hold
+ A3*Ql :hold
+ AO*/Al*/A2 */A3*OATA :load

Q2 AO "Q2 :hold
+ /A! "Q2 ;hold
+ 1.2 "Q2 :hold
+ A3*Q2 :ho1d
+ /AO* A1*/A2*/A3*DATA : load

QJ ,- /AO "QJ :hold
+ /1.1 "QJ :hold
+ A. "QJ :hold
+ A3*Q3 :hold
+ AO* Al*/A2*/A3*OATA ;load

Q4 1.0 "Q4 :hold
1.1 "Q4 ,hold

/1., "Q4 ;holeS
A3*Q4 ;hold

/AO*/A1* A2*/A3*DATA ;load

Q5 :- /AO "Q5 ;hold
+ 1.1 "Q5 ;hold
+ /1.2 "Q5 ;hold
+ A3*Q5 ;hold
+ AO*/A1* A.2*/A3*DATA ;load

Q6 1.0 "Q6 ,hold
/1.1 "Q6 ;hold

/1., "Q6 :ho1d
A3*06 ;hold

/AO* li* A2*/A3*DATA ,load

Q7 :- /AO "Q7 ;hold
+ /A! "Q7 ;ho1d
+ /1.2 "Q7 ;hold
+ A3*07 ;hold
+ AO* A1* A.2*/A3*DATA ;load

Q8 1.0 "Q8 :hold
+ 1.1 "Q8 ;hold
+ A' "Q8 ;hold
+ /A3*08 ;hold
+ /AO*/A1*/A2* A3*DATA Iload

Q9 :- /1.0 "Q9 ;hold
+ A! "Q9 ;hold
+ 1.2 "Q9 ;hold
+ /1.3*09 ,hold
+ AO*/Al*/A2* A3*DATA ;load

Q10 1.0 *Q10 :hold
+ /A! *QlO ;hold
+ 1.2 *QlO Ihold
+ /A3*QlO ,hold
+ /AO* Al*/A2* A3*OATA ;load

Qll :- /AO *011 ;hold
+ /A! *Q11 ;hold
+ A' *Q11 Ihold
+ /A3*Q11 ;hold
+ AO* Al*/A2* A3*DATA tload

Q12 1.0 *012 thold
A! *Q12 thold

/1.. *Q12 thold
/A3*Q12 thold

/AO*/Al* A2* A3*OATA ; load

QU :- /1.0 *Q13 ;hold
+ 1.1 *Q13 ;hold
+ /1.2 *013 ;hold
+ /A3*013 ,hold
+ AO*/Al* A2* A3*DATA ;load

QU AO *014 ;hold
/A! *014 ;hold

/1.2 *014 ;hold

SET!' AD /Al /A2 /A3
CLDCK!' CLKI CLK2

SET!' /AO Al /A2 /A3
CLOClQ' CLKI CLlt2

SET!' AO Al /A2 /A3
CLOCK!' CLKI CLK2

SETF /AO /AI A2 /A3
CLOCKF CLKl CLX2

SETF AO /Al A2 /A3
CLOCK!' CLKI CLK2

SETF /AO Al A2 /A3
CLOCKF CLKI CLK2

SET!' 1.0 Al A2 /A3
CLOCK!' CLKI CLK2

SET!' /AO /Al /A2 AJ
CLOCK!' CLKI CLK2

SET' AD /Al /A2 AJ
CtocKF CLKl CLK2

SETF /AO Al /A2 AJ
CLOCKF CLK1 CLX2'

SET' AO Al /0\2 AJ
CLOCKF CLK! CLlU

SET!' /AO /Al A' AJ
CLOCK!' CUI CLK2

SET' AO /Al A' AJ
CLOCK!' CLKI CLK2

SETl" /AO A! 1.2 1.3
CLOClCl' CLKI CLK2

SET' 1.0 A! 1.2 A3
CLOCJa' CLKI CLK2

SET!' DATA

SET!' /AO /ll /A.2 /A3
CLOCJa' CL!U CL1t2

Page: 1
9 q cgcgcq cgcgcgcgcg cgcgcqcgclJ cgcgcgc

00 XXXXLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLH
01 XXXXXXLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLL
02 XXXXXXXXLL LLLLLLLLLL LLLLLLLLLL LLLLLLL
03 XXXXXXXXXXLLLLLLLLLL LLLLLLLLLL LLLLLLL
04 XXXXXXXXXXXXLLLLLLLL LLLLLLLLLL LLLLLLL
Q5 XXXXXXXXXXXXXXLLLLLL LLLLLLLLLL LLLLLLL
06 XXXXXXXXXXXXXXXXLLLL LLLLLLLLLL LLLLLLL
Q7 1(XXXXXXXXXXXXXXXXXLL LLLLLLLLLL LLLLLLL
08 XXXXXXXXXXXXXXXXXXXXLLLLLLLLLL LLLLLLL
Q9 XXXXXXXXXXXXXXXXXXXXXXLLLLLLLL LLLLLLL
QI0 XXXXXXXXXX:.oocxxxxxxx XXXXLLLLLL LLLLLLL
Q11 XXXXXXXXXXxxxx:xxxxxx XXXXXXLLLL LLLLLLL
Q12 XXXXXXXXXXxxxxxx:xxxx XXXXXXXXLL LLLLLLL
Q13 x:xxxxxxxxx XXXXXXXXXXXXXXXXXXXXLLLLLLL
Q14 x:xxxxxxx:xx XXXXXXXXXXxxxxxxx:xxx XXLLLLL
015 x:xxxxxxxxx XXXXXXXXXXXXXXXXXXXXXXXXLLL
AD XXLLLHHLLB HLUlHLLHHL LHHLLHHLLH HLUDILL
Al XXLLLLLHHH HLLLLHHHHL LLLHHHHLLL LHHHHLL
A.2 XXLLLLLLLL UlHHHHHHHL LLLLLLLHHH HHHHHLL
A3 XXLLLLLLLL LLLLLLLLLH HHHHHHHHKHHKHHHLL
DATA LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLUIH

Monolithic mMemories



(C) - COPYRIGHT HONLITHIC MEMORIES INC., 1984

Title : 16-BIT Addressable Reqister
Pattern : ADREG16.PDS
Revision: A
Author : John Birkner
COlllpany : Monolithic Helllories Inc
Date : 2/11/85

o -------- -------- -------- -------- -------- -------- -------- -x---
1 -------- -------- -------- -------- -------- -------- -------_ ----_
2 X------- -------- -------- -------- -------- -------- -------- -----
3 ----X--- -------- -------- -------- -------- -------- -------- -----
4 -X---X-- X------- -------- -------- -------- -------- -------- x---x
5 XXXXXXXX xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX xxxxxxxx xxxxxxxx xxxxx
6 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
7 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXxxx XXXXXXXX XXXXXXXX XXXXX
8 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
9 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX

10 XXXXXXXX XXXXXXXX xxxxxxxx XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX xxxxx
11 -X---X-- X------- -------- -------- -------- -------- -------- -X--X
12 ----X--- -------- -------- -------- -------- -------- -------- --X--
13 X------- -------- -------- -------- -------- -------- -------- --X--
14 -------- -------- -------- -------- -------- -------- -------- --X--
15 -------- -------- -------- -------- -------- -------- -------- X-X--

16 -------- -------- -------- -------- -------- -------- ------X- -X---
11 -------- -------- -------- -------- -------- -------- ------X- ----X
18 X------- -------- -------- -------- -------- -------- ------X- -----
19 ----X--- -------- -------- -------- -------- -------- ------X- -----
20 -X---X-- X------- -------- -------- -------- -------- -------- x----
21 XXXXXXXX XXXXXXXX XXXXXXXX xxxxxxxx XXXXXXXX xxxxxxxx XXXXXXXX XXXXX
22 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
23 XXXXXXXX xxxxxxxx XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
24 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
25 XXXXXXXX xxxxxxxx XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
26 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
27 -X---X-- X------- -------- -------- -------- -------- -------- -X---
28 ----X--- -------- -------- -------- -------- -------- --X----- -----
29 X------- -------- -------- -------- -------- -------- --X----- -----
30 -------- -------- -------- -------- -------- -------- --X----- ----x
31 -------- -------- -------- -------- -------- -------- --X----- X----

32 -------- -------- -------- -------- -------- ------X- -------- -X---
33 -------- -------- -------- -------- -------- ------X- -------- -----
34 -X------ -------- -------- -------- -------- ------X- -------- -----
35 -----X-- -------- -------- -------- -------- ------X- -------- -----
36 X---X--- X------- -------- -------- -------- -------- -------- X---X
31 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXx XXXXXXXX XXXXX
38 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX xxxxxxxx XXXXX
39 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
40 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
41 XXXXXXXX XXXXXXXX XXXXXXXX xxxxxxxx xxxxxxxx xxxxxxxx XXXXXXXX XXXXX
42 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
43 X---X--- X------- -------- -------- -------- -------- -------- -X--X
44 -----X-- -------- -------- -------- -------- --X----- -------- -----
45 -X------ -------- -------- -------- -------- --X----- -------- -----
46 -------- -------- -------- -------- -------- --X----- -------- -----
47 -------- -------- -------- -------- -------- --X----- -------- X----

48 -------- -------- -------- -------- ------X- -------- -------- -X---
49 -------- -------- -------- -------- ------X- -------- -------- ----x
50 -x------ -------- -------- -------- ------X- -------- -------- -----
51 -----X-- -------- -------- -------- ------X- -------- -------- -----
52 x---x--- X------- -------- -------- -------- -------- -------- X----
53 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
54 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
55 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX xxxxxxxx xxxxxxxx xxxxxxxx XXXXX
56 XXXXXXXX xxxxxxxx xxxxxxxx XXXxxxxx xxxxxxxx XXXXXXXX XXXXXXXx XXXXX
57 xxxxxxxx XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
58 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
59 X---X--- X------- -------- -------- -------- -------- -------- -x---
60 -----X-- -------- -------- -------- --X----- -------- -------- -----
61 -X------ -------- -------- -------- --X----- -------- -------- -----
62 -------- -------- -------- -------- --X----- -------- -------- ----X
63 -------- -------- -------- -------- --X----- -------- -------- X----

64 -------- -------- -------- ------X- -------- -------- -------- -X---
65 -------- -------- -------- ------x- -------- -------- -------- -----
66 X------- -------- -------- ------X- -------- -------- -------- -----
61 -----X-- -------- -------- ------X- -------- -------- -------- -----
68 -X--X--- X------- -------- -------- -------- -------- -------- X---X
69 XXXXXXXX XXXXXXXX xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
10 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
71 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
72 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX xxxxxxxx XXXXX
73 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
74 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
75 -X--X--- X------- -------- -------- -------- -------- -------- -X--X
76 -----X-- -------- -------- --X----- -------- -------- -------- -----
77 X------- -------- -------- --X----- -------- -------- -------- -----
18 -------- -------- -------- --X----- -------- -------- -------- -----
19 -------- -------- -------- --X----- -------- -------- -------- X----

80 -------- -------- ------X- -------- -------- -------- -------- -X---
81 -------- -------- ------X- -------- -------- -------- -------- ----x
82 X------- -------- ------X- -------- -------- -------- -------- -----
83 -----X-- -------- ------X- -------- -------- -------- -------- -----

84 -x--x--- X------- -------- -------- -------- -------- -------- X----
85 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
86 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
87 XXXXXXXX xxxxxxxx XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
88 XXXXXXXX XXXXXXXX XXXXXXXX xxxxxxxx XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
89 XXXXXXXX XXXXXXXX XXXXXXXx XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXX XX
90 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXX XX
91 -x--x--- x------- -------- -------- -------- -------- -------- -x---
92 -----X-- -------- --X----- -------- -------- -------- -------- -----
93 X------- -------- --X----- -------- -------- --- _

94 -------- -------- --X----- -------- -------- -------- -------- ----x
95 -------- -------- --x----- -------- -------- -------- -------- X----

_ ----- -------- -------- -x---
97 -------- ------X- -------- -------- -------- -------- -------- -----
98 -X------ ------X- -------- -------- -------- -------- -------- -----
99 ----X--- ------X- -------- -------- -------- -------- -------- -----

100 X----X-- X------- -------- -------- -------- -------- -------- X---X
101 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
102 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXxxxxx XXXXXXXX XXXXXXXX XXXXX
103 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
104 XXXXXXXX XXXXXXXX xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
105 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
106 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
107 X----X-- X------- -------- -------- -------- -------- -------- -X--X
108 ----X--- --X----- -------- -------- -------- -------- -------- -----
109 -X------ --X----- -------- -------- -------- -------- -------- -----
110 -------- --X----- -------- -------- -------- -------- -------- -----
111 -------- --x----- -------- -------- -------- -------- -------- X----

112 ------X- -------- -------- -------- -------- -------- -------- -X---
113 ------X- -------- -------- -------- -------- -------- -------- ----X
114 -X----X- -------- -------- -------- -------- -------- -------- -----
115 ----X-X- -------- -------- -------- -------- -------- -------- -----
116 X----X-- x------- -------- -------- -------- -------- -------- X----
117 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
118 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
119 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
120 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
121 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
122 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX
123 X----X-- X------- -------- -------- -------- -------- -------- -X---
124 --X-X--- -------- -------- -------- -------- -------- -------- -----
125 -XX----- -------- -------- -------- -------- -------- -------- -----
126 --X----- -------- -------- -------- -------- -------- -------- ----X
127 --X----- -------- -------- -------- -------- -------- -------- X----

00 015

01 014

02 013

03 012

E1 ClK1

NC PRlD1

NC NC

AO NC

A1
VI

NCa:
w VI>
ir AND-OR a:

VCC w NC0 ARRAY >...
8K ir

:> 0A2 Q. FUSES ... GND~ :>
A3

Q.

~ NC

DATA NC

NC NC

PRlD2 NC

ClK2 E2

04 011

05 010

06 09

08



.•.__ a.=_ ~= I " __ 6 ••_1I..A."

Fiqure 1 illustrate. a simple traffic intersection
consisting of two one-way streets, direction 1 and
direction 2. Each direction has a .ignal consisting of
red, yellow, and green lamps which are activated with
appropriately named active high signals. Also each
direction has a sensor which provide. an active high
signal indicating the presence of an oncoming vehicle.
Our controller i. to manage this intersection with the
sensors as inputs and the lamps as outputs, as shown in
Fiqure 2.

[§J=
REDl

o YELl

o GRNl

SEN2

Fiqure 2 also includes the system clock and an initialize
(or reset) signal, which drives the controller to a pre-
defined initial state. This raises two important issues
in designing sequential logic with PALdevices. First,
all circuit implementations of sequential logic with PAL
devices are totally synchronous. This implies that all
state variables (flip-flops) change at the same time,
precisely after the rising edge of the clock. Second,
PALsequential logic designs should include a means for
initialization to implement test programs and ensure
reliable circuit operation. The specifics of the controller
operations are detailed with a atate diagram shown in
Fiqure 3.

Each circle in Fiqure 3 represents a stable atat., i.e. an
output confiquration lasting at least one clock cycle.
Inside the circles is the name of the state (SO-57) and
the outputs associated with that state. For the sake of
simplicity in the state diagram, the transitions involving
INIT are omitted: INIT simply drives the circuit to SO
from any state, regardless of other inputs.

Since RED1 = / RED2, RED1 is implemented with one flip-flop
and RED2 with an external inverter.

SENl

SEN2

INIT TRAFFIC
SIGNAL

CONTROLLER

REDl

RED2

YELl

YEL2

GRNl

GRN2



TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

TRAFFIC SIGNAL CONTROLLER
TRAFFIC1. POS
A
KELVIN CHOW
MONOLITHIC MEMORIES INC., SANTA CLARA
2/28/85

g c cgcgcgcgcg cgccc ccc c
CLK XXHLHHLLHL LHLLHLLHLL HLLHLHLHLH LHLHLHHL
INIT HHHHHHHLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLL
SEN1 XXXXXXXLLL HHHLLLHHHL LLLLLLLLLL LLLLLLLL
SEN2 XXXXXXXLLL LLLHHHHHHL LLHHHHHHHH HHHHHHHH
Rl XXXXXLLLLL LLLLLLLLLL LHHHHHHHHH LLLLLLHH
V 1 XXXXXLLLLL LLLLLLLLHH HLLLLLLLLL LLLLHHLL
Gl XXXXXHHHHH HHHHHHHHLL LLLLLLLLLL HHHHLLLL
Y2 XXXXXLLLLL LLLLLLLLLL LLLLLLLLHH LLLLLLLL
G2 XXXXXLLLLL LLLLLLLLLL LHHHHHHHLL LLLLLLHH

CHIP TRAFFIC PAL16RP8

CLK SENl SEN2 INIT NC NC NC NC NC GNO
JOE Q2 Ql QO Rl Vl Gl V2 G2 VCC

STRING Il /SEN1*/SEN2*/INIT
STRING I2 /SEN1*SEN2*/INIT
STRING I3

,
SEN1*/SEN2*/INIT

STRING 14 ,
SEN1*SEN2 * /INIT

STRING IS
,

INIT

STATE

80 = BIN(4] (Rl,Vl,Gl,Y2,G2)
8l = BIN(4] (Rl,Yl,Gl,Y2,G2)
82 - BIN(4] (Rl,Vl,Gl,Y2,G2)
83 BIN [8] (Rl, Vl, Gl, V2, G2)
8. - BIN(17] (Rl,Yl,Gl,Y2,G2)
85 BIN(17] (Rl, Yl,Gl, Y2,G2)
86 BIN(17} (Rl, Yl,Gl, Y2,G2)
87 z BIN[l8](Rl,Yl,Gl,V2,G2)

EQUATIONS

80 11*Sl + 12*S2 + 13*SO + 14*Sl + 15*SO
8l = 11*S2 + 12*S2 + I3*S2 + 14*S2 + 15*50
82 11*S3 + 12*S3 + 13*53 + 14*53 + 15*SO
83 11*54 + 12*S4 + 13*54 + 14*S4 + 15*SO
8. 11*55 + 12*S4 + 13*56 + 14*55 + 15*50
85 11*56 + 12*S6 + 13*S6 + 14*56 + 15*SO
86 11*S7 + 12*S7 + 13*S7 + 14*S7 + I5*SO
87 "" 11*SO + 12*SO + I3*SO + 14 *SO + 15*SO

Logic Symbol

ClK VCC

SEN1 G2

SEN2 V2

INIT G1

NC Y1

NC R1

NC 00

NC 01

NC 02

GND OE

TRACE_ON CLK INIT SENl SEN2 Rl V1 Gl Y2 G2

SETF OE INIT
CLOCKF
CLOCKF
CHECK IRl IYl Gl IV2 IG2

5ETF /INIT /5EN1 /SEN2
CLOCKF

SETF SEN1 /SEN2
CLOCKF
CHECK IRl IYl Gl IV2 IG2

SETF /SEN1 5EN2
CLOCKF
CHECK /R1 /Y1 G1 /Y2 /G2

SETF SENl SEN2
CLOCKF
CHECK IRl Yl IGl IV2 IG2

8ETF 18ENl 18EN2
CLOCKF
CHECK R1 /V1 /G1 /V2 G2

SETF /SENl SEN2
CLOCKF
CHECK Rl G2

CLOCKF
CHECK R1 /Y1 /Gl V2 /G2

CLOCKF
CHECK IRl IYl Gl IV2 IG2

CLOCKF
CLOCKF
CLQCKF
CLOCKF

Monolithic W Memories



State Machine Design Example
A typical control logic problem is the memory-to-processor
handshake on memory transfer used in many computer archi-
tectures. The processor makes a transfer request by activating a
request line (REO) and specifies a read or write operation on a
ReadlWrite line (RIW).

During a read operation, the processor waits for a Data Available
signal at which time the data bus is sampled and the request line
lowered, thus completing the cycle. During a write operation, the
processor places data on the bus and waits for a Write Complete
signal after the write cycle is finished. Upon write complete, the

i STATE DOUT DA WE WC CO Cl
I WAIT 0 0 0 0 0 0
I READ1 1 0 0 0 0 0

I READ2 1 1 0 0 0 0

I READ3 0 0 0 0 0 0

: COUNT1 0 0 1 0 1 0

COUNT2 0 0 1 0 0 1

I COUNT3 0 0 1 0 1 1

I WRITE1 0 0 1 0 0 0
I WRITE2 0 0 1 1 0 0
I WRITE3 0 0 0 1 0 0

request line is lowered, hence completing the cycle. Table 1
shows the state assignments and the appropriate outputs. The
state diagram is shown in Figure 1. Also the handshaking
operation is illustrated in the timing diagram of Figure 2.

The memory-board logic to implement this function may be
designed with gates and edge-triggered flip-flops as shown in
Figure 3. This particular design would require aboutfive SSIIMSI
packages, but the same design can be implemented by a single
PAL 16RP6. The PAL design specification using state equations
is shown on the next page.

DATA
OUT

ENABLE



PATTERN
REVISION
AUTHOR
COMPANY
DATE

J'l.I:.M.UttI J1ANU::'l1.A.K~ LUGJ.C

MEMORY 1 • PDS
A
KELVIN CHOW
MONOLITHIC MEMORIES INC., SANTA CLARA, CA
2/28/85

STRING 11
STRING 12
STRING 13 I

STRING 14 '
STRING IS

REQ*RW*ADDR1 *ADDR2 *ADDRJ *ADDR4 * / INIT
REQ* /RW*ADDR1 *ADDR2 *ADDRJ *ADDR4 */ INIT'
(/REQ+/ADDRl+/ADDR2+/ADDRJ+/ADDR4) * /INIT
(jREQ+/RW+/ADDR1+/ADDR2+/ADDRJ+/ADDR4) * /INIT
INIT I

WAIT
READl
READ2
READJ
WRITEl
COUNT1
COUNT2
COUNTJ
WRITE2
WRITE3

- BIN{O) (OOUT,DA,WE,WC,CO,C1)
- BIN[32] (DOUT,DA,WE,WC,CO,Cl)
- BIN(48) (DOUT,DA,WE,WC,CO,Cl)
- BIN(O) (OOUT,DA,WE,WC,CO,Cl)
- BIN(8] (OOUT,OA,WE,WC,CO,C1)
••• BIN(lO) (OOUT,OA,WE,WC,CO,Cl)
- BIN(9] (OOUT,DA,WE,WC,CO,Cl)
- BIN(ll} (DOUT,DA,WE,WC,CO,Cl)
- BIN(l2} (DOUT,DA,WE,WC,CO,Cl)
- BIN(06] (DOUT,DA,WE,WC,CO,Cl)

WAIT I2*WRITEl + Il*REAOl + I3*WAIT
+ IS*WAIT

READl :- Io6*READ2 + I3*REA02 + I2*REA02 + 1l*READ2
+ IS*WAIT

READ2 :- I4*REA03 + I3*READ3 + I2*READJ + Il*REAOJ
+ IS*WAIT

READ3 :- 1l*READJ + 14*WA1T
+ IS*WAIT

WRITEl :. 14 *COUNTl + 13*COUNTl + I2*COUNTl + Il*COUNTl
+ IS*WAIT

COUNTl I4*COUNT2 + I3*COUNT2 + I2*COUNT2 + Il*COUNT2
+ IS*WAIT

COUNT2 : - 14 *COUNTJ + IJ*COUNT3 + I2*COUNT3 + Il*COUNTJ
+ IS*WAIT

COUNTJ 14*WR1TE2 + 13*WRITE2 + I2*WRITE2 + Il*WRITE2
+ 1S*WAIT

WRITE2 :- 14*WRITEJ + IJ*WRITE3 + 12*WRITE3 + Il*WRITEJ
+ IS*WAIT

WRITE3 :- Il*WRITE3 + I4*WAIT
+ IS*WAIT

SETF IN IT /REQ OE RW ADDRl ADDR2 ADDR3 ADDR4
ClOCKF eLK
CHECK /OOUT

SETF REQ /INIT
ClOCKF
ClOCKF
CLQCKF
CLQCKF
CHECK DOUT DA

SETF /REQ
CLOCKF
CHECK /OOUT /DA

SETF REQ /RW
ClOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF

SETF /REQ
CLOCKF
CLOCKF
CLOCKF

page 1
g cg c cccg cg cccc ccgcc

CLK XXHLLHHLHH LHLHLLHHLL HHLHLHLHLH LHLLHLHL
REQ LLLLHHHHHH HHHHHLLLLH HHHHHHHHHH HHHLLLLL
RW HHHHHHHHHH HHHHHHHHHL LLLLLLLLLL LLLLLLLL

/OOUT XXXHHHLLLL LLLLLLUtHH HHHHHHHHHH JrnHHHHHH
/DA XXXHHHHHHL LLLLLLLHHH HHHHHHHHHH HHHHHHHH
/WE XXXHHHHHHH HHHHHHHHHH HLLLLLLLLL LLHHHHHH
/WC XXXXXXHHHH HHHHHHHHHH mtHHHHHHHH LLHHHHHH

Logic Symbol

ClK VCC

ADDRl NC

ADDR2 DOUT

ADDR3 i5A

ADDR4 WE

REO CO

RW Cl

INIT WC

NC NC

GND OE



Title
Pattern
Revision
Author
Company
Date

4Bi t Counter
4cnt7pds
A
Mehrnaz Hada
Monolithic Memories Inc. Santa Clara, CA
1/14/85

CLK UP AI BI C! DI CLR LOADNC GND
/OC NC Ne 0 C B A NC NC VCC

EQUATIONS

A : - /A* /B* /C*/O* /UP* /UJAD* /CLR
+ /A* B* C* 0* UP*/LOAD*/CLR
+ A* Blit /O*/UP*/UJAO*/CLR
+ A*/B* c* UP*/LOAC*/CLR
+ A* /c* UP*/LOAC*/CLR
+ A* C*/UP*/LOAC* /CLR
+ LOAC*/CLR* AI

B :- /B* /C* /0* /UP* /UJAO* /CLR
+ /B* C* C* UP*/LO~C*/CLR
+ B* C*/O* /UJAO*/CLR
+ B*/C* UP*/UJAO*/CLR
+ B* O*/UP*/UJAO*/CLR
+ LOAD*/CLR* BI

C /C*/C*/UP*/LOAC*/CLR
+ /C* D* UP*/LOAC*/CLR
+ C*/D* UP"'/LOAC"'/CLR
+ c* C*/UP"'/LOAC*/CLR
+ LOAO*/CLR* CI

0 :- /0* /UJAO*/CLR
+ LOAO*/CLR* OI

FORI:- 1 TO 16 00
BEGIN

CLOCKFCLK
END

SETF UJAO /CLR /UP AI BI CI OI
CLOCKF
SETF /UJAD

FOR I:- 1 TO 16 DO
BEGIN

CLOCKFCLK
END

SETF UJAO CLR AI /BI CI /OI
CLOCKFCLK

;When CLR-l, A-O.
;Else it will count
;UP or DOWN.

; Count
;New value is loaded
;when LOAD-l, CLR-O.

;Load all registers
;to HIGH and count up

;Clear all registers

; Start Counting up

iCount up 16 clock
icycles

;Load all registers
; to HIGH and count
; down
; Count down 16 clock
;cycles

;Test setting LOAD
; and CLR on at the
; same' time.

The 4-bit counter counts up or down and has the clear and
load capability. The clear operation overrides count and
load. The counter counts up when CLR-low, LOAD-low, and
UP-high. It counts down whenever CLR-low, LOAOalow, and

Page 1
9 cgcgc c c c c c c c c c c c c c c cgc

AI HHHHH}Qfi{HHHHHHHJnnn{H HHHHHJnnn{H HHHHHJnnn{H
BI HHHHHJnnn{H HHHHHJnnn{H HHHHHJnnn{H mnnnnnnnm
CI HHHHHJnnn{H HHHHHJnnn{H HHHHHJnnn{H mnnnnnnnm
01 HHHHHJnnn{H HHHHHJnnn{H HHHHHJnnn{H mnnnnnnnm
LOADHHHHHHLLLLII II I II II I I II IT II I II LLLLLLLLHH
CLR LLLLHHLLLLIIUIIIIII IIIIIIIIII TIIIIIIIII
UP XXXXXXIIHHHHHHHHJnnn{H lIHHHHHHHHHIIHHHHHHHLL
A XXXHHLLLLLTT I I TITI TT unnnnoonm HHHHHLUiHH
D XXXHHLLLLL LLLHHHHHHHHLLLLLLLLH HHHJnnnfLLH
C XXXHHLLLLHHHHLLLLHHHHLLLLHHHHLLLIJOiHHUJi
o XXXHIILLIIIIL LlIIILLllllLIJI HLLIIIILLIIIII. LlIIILLllllLLIl

CLK VCC

UP NC

A1 NC

81 A

C1 8

01 C

CLR 0

LOAD NC

NC NC

GND OC

Monolithic W Memories



Title
Pattern
Revision
Author
company
Date

8Count
8count.pds
A
Mehrnaz Hada
Monolithic Memories Inc. Santa Clara, CA
1/15/85

;This 8-bit up/down counter has the hold and load
;capabilities. It sets all the outputs high it SET-high.
;It loads new value when SET-low and LOAI>-high. Else it
;counts up it UP-high and counts down if UP-low.

CHIP 8Bitcount.r PAL20X8

eLl( UP 00 01 02 03 04 05 06 D7 LO GND
/OC SET Q7 Q6 Q5 04 03 02 01 00 CIN VCC

EQUATIONS

/00 : - /SET* LO*/00
+ /SET*/LO*/QO

:+: /SET*/LD*CIN* UP
+ /SET*/LD*CIN*/UP

/01 :- /SET* LD*/Dl
+ /SET*/LD*/01

:+: /SET*/LD*CIN* UP* 00
+ /SET*/LD*CIN*/UP*/OO

/02 : - /SET* LD*/02
+ /SET*/LD*/02

: +: /SET*/LO*C1N* UP* 00* Ql
+ /SET*/LD*CIN*/UP*/OO*/Ql

/Q3 : - /SET* LD*/D3
+ /SET*/LO*/Q3

:+: /SET*/LD*CIN* UP* 00* 01* 02
+ /SET*/LD*CIN*/UP*/00*/01*/Q2

;Load 00
;Hold
; Increment
; Decrement

;Load 01
;Hold
; Increment
; Decrement

;Load 02
;Hold
; Increment
; Decrement

;Load D3
;Hold
; Increment
; Decrement

/04 :- /SET* LD*/D4 :Load D4
+ /SET*/LD*/Q4 :Hold

:+: /SET*/LD*CIN* UP* QO* Q1* Q2* Q3 ;Increment
+ /SET*/LD*CIN*/UP*/QO*/Ql*/Q2*/Q3 ;Oecrement

/Q5 :- /sn* LD*/05 ;Load 05
+ /SET*/LD*/Q5 ;Hold

:+: /SET*/LD*C1N* UP* QO* Ql* Q2* Q3
* Q4 ; Increment

+ /SET*/LD*CIN*/UP*/QO*/Ql*/Q2*/03
*/04 ;Oecrement

/06 :- /SET* LD*/D6 ;Load D6
+ /SET*/LD*/06 :Hold

:+: /SET*/LD*CIN* UP* QO* Ql* Q2* 03
* 04 * 05 ; Increment

+ /SET*/LD*CIN*/UP*/QO*/Q1*/Q2*/Q3
*/Q4*/Q5 : Decrement

/07 : - /SET* LD*/07 :Load 07
+ /SET*/LD*/Q7 ;Hold

:+: /SET*/LD*CIN* UP* 00* 01* 02* 03
* 04* 05* Q6 ; Incre.ent

+ /SET*/LD*CIN*/UP*/00*/01*/02*/03
*/04*/05*/06 ; Decrement

TRACE_ON SET LD eIN UP
DO 01 02 D3 04 05 06 D7
QO Q1 Q2 Q3 Q4 Q5 Q6 Q7

SETF OC SET
CLOCKFCLl(
CHECK07 Q6 05 04 Q3 02 01 00 ;All outputs high
SETF /SET UP CIN /LD ; Counting up

FOR 1:-1 TO 9 DO
BEGIN

CLOCKFCLl(
IF 1-8 THEN ;Checking atter 8

BEGIN ;clock pulses
CHECK/Q7 /Q6 /Q5 /Q4 /Q3 Q2 Q1 QO

END
END

SETF /CIN ;Holding
CLOCKFCLl(
CLOCKFCLl( ;Th. outputs hold to

:their values

SETF LO /07 06 /05 04 /03 02 /01 DO
CLOCKFCLK
CHECK/Q7 Q6 /Q5 Q4 /Q3 Q2 /Q1 QO

SETF /LD UP
FOR 1:-1 TO 5 DO

BEGIN
CLOCKFCLK
IF 1-3 THEN

BEGIN
SETP /UP

END
END

Checking the output
tor the loaded data
Countinq up after
removinq HOLD, count
up 3 cycles, count
down for 2 cycles.

Paqe: 1
q cgccc cccee eqccqeqe eegcc

SET HHHHLLLLLLLLLLLLLLLL LLLLLLLLLL LLLLLLLL
LO XXXXLLLLLLLLLLLLLLLL LLLLLLHHLLLLLLLLLL
C1N XXXXHHHHHHHHHHHHHHHHHHLLLLHHHHHHHHHHHH
UP XXXXHHHHHHHHHHHHHHHHHHHHHHLLHHHHHHLLLL
DO XXXXXXXXXXXXXXXXXXXXXXXXXXHHHHHHHHHHHH
Dl XXXXXXXXXXXXXXXXXXXXXXXXXXLLLLLLLLLLLL
D2 XXXXXXXXXXXXXXXXXXXXXXXXXXHHHHHHHHHHHH
D3 XXXXXXXXXXXXXXXXXXXXXXY.XXXLLLLLLLLLLLL
D4 XXXXXXXXXXXXXXXXXXXXxxxxxxmnm HHHHHHHH
05 XXXXXXXXXXXXXXXXXXXXXXXXXXLLLLLLLLLLLL
06 XXXXXXXXXXXXXXXXXXXXXXXXXXHHHHHHHHHHHH
07 XXXXXXXXXXXXXXXXXXXXXXXXXXLLLLLLLLLLLL
00 XXXHHLLHHLLHHLLHHLLHHLLLLLUtHL utHLLHHL
01 XXXHHLLLIJIHHHLLLLHHHHLLLLLLLLHHHHLLHHH
Q2 XXXHHLLLLLLLLiIHHHHHHHLLLLLLHHHHHHLLHHH
03 XXXHHLLLLLT T T T T T T T T T LHHHHHHLLLLLLHHLLL
04 XXXHHLLLLLI T T T T T T T T T LLLLLLLHHHHHHHHHHH
05 XXXHHLLLLLITTITITTTT TITITTITIT LLLLLLLL
06 XXXHHLLLLLT T T T T T T T T T LLLLLLLHHHHHHHHHHH
07 XXXHHLLLLLIT T II T IT IT T IT T IT IT IT LLLLLLLL

Logic Symbol

ClK VCC

UP CIN

00 00

01 01

02 02

03 03

04 04

05 05

06 06

07 07

lO SET

GNO OC

3·28 Monolithic W Memories



Title 9Bitcounter
Pattern 9BitCnt.pds
Revision A
Author Kehrnaz Hada
Company Monolithic Kemories Inc., Santa Clara, CA
Date 1/28/85

IThe 9-bit synchronous counter has parallel load, increment,
land hold capabilities. The carry out pin (lCO) shows how to
; implement a carry out using a register by anticipated one
;count before the ter1ll.inal count if counting and the terminal
;count if loading.

loperations Table

z
Q
D

Q PLUS I

/QO : - /LD* /QO
+ LD*/OO

:+: /LD

/Q1 /LD*/Q1
+ LO*/Ol

:+: /LO* QO

/Q2 /W*/Q2
+ LO*/02

:+: /LD* QO* Ql

/Q3 /LD*/Q3
+ LD*/03

:+: /LD* QO* Q1* Q2

/Q4 /W*/Q4
+ LD*/04

:+: /LD* QO* Q1* Q2* Q3

/QS /W*/QS
+ LD*/OS

:+: /LD* QO* Ql* Q2* Q3* Q4

/Q6 /LD*/Q6
+ LD*/06

:+: /LD* QO* Q1* Q2* QJ* Q4* QS

/Q7 /LD*/Q7
+ LD*/07

:+: /LD* QO* Q1* Q2* Q3* Q4* QS* Q6

/QB /LD*/Q8
+ LD*/08

:+: /LD* QO* Ql* Q2* Q3* Q4* QS* Q6* Q7

co /LD*/QO* Q1* Q2* Q3* Q4* QS* Q6* Q7* Q8
LO* 00* 01* 02* 03* 04* DS* D6* D7* D8

TRACE ON /ac /LD D8 D7 D6 DS 04 03 02 01 DO
- /ca Q8 Q7 Q6 QS Q" Q3 Q2 Ql QO

SETF ac LD /08 /D7 /D6 /05 /D4 /D3 /0;1 /D1 /DO
CLOCKFCLJt:

HI-Z
Hold
Load
Increment

IHold QS
;Load 05
; Count

El

I Function Table

;CLK /OC /LD 08 D7 D6 D5 D4 D3 D2 Dl DO /ca
: Q8 Q7 Q6 QS Q4 Q3 Q2 Q1 QO

: Data In Data OUt
; Control oDDDDDDDD QQQQQQQQ<l
;CLK /OC /LD 876543210 ICD 876543210 Comment
I -----------------------------------------------------
: C L L LLLLLLLLL H LLLLLLLLL Load

C L H XXXXXXXXX H LLLLLLLLH Increment
C L L LLLLLLLLH H LLLLLLLLH Load

C L H XXXXXXXXX H LLLLLLLHL Increment
C L L LLLLLLLHH H LLLLLLLHH Load

C L H XXXXXXXXX H LLLLLLHLL Increment
C L L LLLLLLHHH H LLLLLLHHH Load

C L H XXXXXXXXX H LLLLLHLLL Increment
C L L LLLLLHHHH H LLLLLHHHH Load

C L H XXXXXXXXX H LLLLHLLLL Increment
C L L LLLLllHHHH H LLLLllHHHH Load

C L H XXXXXXXXX H LLLHLLLLL Increment
C L L LLUlHHHHH H LLLHHHHHH. Load

C L H XXXXXXXXX H LLHLLLLLL Increment
C L L LLHHHHHHH H LLHHHHHHH Load

C L H XXXXXXXXX H LHLLLLLLL Increment
C L L LHHHHHHHH H LHHHHHHHH Load

C L H XXXXXXXXX H HLLLLLLLL Increaent
C L L HHHHHHHHH L HHHHHHHHH Load(Carry out)
C L H XXXXXXXXX H LLLLLLLLL Increment (Rollover)
C L L HHHHHHHLL H HHHHHHHLL Load

C L H XXXXXXXXX H HHHHHHHLH Increment
L L H XXXXXXXXX H HHHHHHHLH Hold, C L H XXXXXXXXX H HHHHHHHHL Increa.nt
C L H XXXXXXXXX L HHHHHHHHH Increment(Carry out)

: C L H XXXXXXXXX H LLLLLLLLL Increment (Roll over), X H X XXXXXXXXX Z ZZZZZZZZZ Test HI-Z;-----------------------------------------------------------

Simulation Results
Page: 1

9 cgcqcqc gcgcqcgcgc gcgcg c
/ac LLLLLLLLLL LLLLLLLLLL LLLLLLL
/ LO LLLLHHLLHH LLHHLLHHLL HHLlHHH

DB LLLLLLLLLL LLLLLLLLLL LLLLLLL
07 LLLLLLLLLL LLLLLLLLLL LLHHHHH
06 LLLLLLLLLL LLLLLLLLLL LLHHHHH
05 LLLLLLLLLL LLLLLLLLLL LLHHHIDI
04 LLLLLLLLLL LLLLLLLLHH HHHHHHH
03 LLLLLLLLLL LLLLHHHHHHHHHHHHH
02 LLLLLLLLLL HHHHHHHHHHHHHHHHH
01 LLLLLLLLLL HHHHHHHHHHHHHHHHH
DO LLLLLLHHHH HHHHHHJDiHHHHHHHHH

/ca XXXHHHHHHHHHHHHHHHHHHHHHHHH
Q8 XXXLLLLLLL LLLLLLLLLL LLLLLHH
Q7 XXXLLLLLLL LLLLLLLLLL LLLHHLL
Q6 XXXLLLLLLL LLLLLLLLLL LLLHHLL
Q5 XXXLLLLLLL LLLLLLLLLL LHHHHLL
Q4 XXXLI.LLLLL LLLLLLLHHH HLLHHLL
Q3 XXXLLLLLLL LLLHHHHLLHHLLHHLL
Q2 XXXLLLLLLL LHHLLHHLLHHLLHHLL
Ql XXXLLLLLLH HHHLLHHLLHHLLHHLL
QO XXXLLHHHHLLHHLLHHLLHHLLHHLL

ClK VCC

DO 00

01 01

02 02

03 03

04

05

06

07

DB

i:D

GNO



Revision
Author
company
Date

_ ••••••••••••••••••• ;- ••••• <:>

A
Mehrnaz Hada
Monolithic Metnor!e. Inc. Santa Clara, CA
1/15/85

;The 10-bit counter increments on the rising edge of the
;clock input (CLK), if CNT input is high. The outputs are
iHIGH-Z when the enable line (JOE) is high and enabled
;when the enable line (JOE) is low. The counter is
;cleared (all lows) if CLR-HIGH.

CHIP 10BitCount PAL20RSlO

/00 : - /SET CNT /CLR * 00
+ /SET /CNT /CLR * /00
+ CLR

:"" /SET • CNT * /CLR * QO * Ql
+ /SET • CNT * /CLR * /00 .• /01
+ /SET * /CNT • /CLR * /01
+CLR

:- /SET
02

+ /SET
+ /SET
+ /SET
+CLR

CNT * /CLR * /00 * /02
CNT • /CLR .• /01 * /02
/CNT * /CLR * /Q2

:,. /SET .• CNT * /CLR * 00 * 01 *
02 * Q3

+ /SET * CNT * /CLR /00 * /Q3
+ /SET * CNT * /CLR /01 * /03
+ /SET • CNT • /CLR /02 * /Q3
+ /SET * /CNT * /CLR * /03
+CLR

:- /SET * CNT * /CLR * 00 * 01 *
02 .• Q3 • Q4

+ /SET .• CNT .• /CLR /QO" /Q4
+ /SET .• CNT .• /CLR /01" /04
+ /SET .• CNT • /CLR .• /02 .• /04
+ /SET .• CNT .• /CLR .• /03 .• /04
+ /SET • /CNT .• /CLR • /04
+CLR

:- /SET .• CNT .• /CLR .• 00 .• 01 .•
02 .• 03 .• 04 .• 05

+ /SET .• CNT • /CLR .• /00 .• /05
+ /SET .• CNT .• /CLR .• /01 .• /05
+ /SET .• CNT .• /CLR .• /Q2 .• /05
+ /SET .• CNT .• /CLR .• /Q3 .• /05
+ /SET .• CNT .• /CLR .• /Q4 • /Q5
+ /SET .• /CNT • /CLR .• /05
+ CLR

: - /SET .• CNT .• /CLR .• 00 .• 01 .•
02 .• 03 .• 04 .• 05 .• 06

+ /SET • CNT .• /CLR .• /00 .• /Q6
+ /SET .• CNT .• /CLR .• /01 .• /06
+ /SET .• CNT .• /CLR .• /02 .• /Q6
+ /SET .• CNT .• /CLR .• /03 .• /06
+ /SET .• CNT .• /CLR • /04 .• /06
+ /SET .• CNT * /CLR .• /05 .• /06
+ /SET .• /CNT .• /CLR .• /06
+CLR

: = /SET • CNT * /CLR .• QO * Ql .•
02 .• 03 .• 04 .• OS .• 06 .• 07

+ /SET .• CNT .• /CLR • /QO .• /07
+ /SET .• CHT .• /CLR • /Q1 .• /07
+ /SET .• CNT .• /CLR .• /02 .• /07
+ /SET .• CNT .• /CLR .• /03 .• /07
+ /SET .• CNT .• /CLR .• /04 .• /07
+ /SET .• CNT .• /CLR .• /05 .• /07
+ /SET .• CNT .• /CLR .• /06 .• /07
+ /SET .• /CNT .• /CLR .• /Q7
+ CLR

: '"" /SET .• CNT .• /CLR
Q2 .• 03 .• Q4 .• Q5
08

+ /SET CNT
+ /SET CNT
+ /SET CNT
+ /SET CNT
+ /SET • CNT
+ /SET .• CNT
+ /SET CNT
+ /SET CNT

* /CLR /00* /CLR /01
.• /CLR .• /02
.• /CLR .• /Q3
• /CLR • /Q4
• /CLR .• /05
.• /CLR - /06
.• /CLR - /Q7

:Toqqle
;Hold
,CLR

:Toggle
;Toggle
;Hold
;CLR

;Togg1e
;Toggle
:Hold
;CLR

:Toggle
;Toqqle
iTogqle
:Hold
,CLR

:Toggle
;Toggle
:Togqle
;Toggle
;Hold
;CLR

iToqgle

;Toqqle
:Toggle
;Togqle
:Toqgle
iToqqle
:Hold
iCLR

:Toqqle

;Toggle
;Togqle
;Togqle
:Toggle
;Toqqle
:Toggle

;Hold
iCLR

;Toggle
:Toggle
iToggle
;Toggle
:Togqle
:Toggle
;Toqgle
:Hold
,CLR

.• /08
* /08
.• /08
.• /08
• lOB

/08
/08
/08

;Toggle
:Toggle
:Toqgle
:Toggle
:Toggle
iToggle
:Toqqle
:Toggle

/og : - /SET - CNT .• /CLR QO - Ql .• ;Togqle
02 .• 03 - 04 - 05 Q6 * 07 *
08 * 09

+ /SET * CNT /CLR /00 * /Og ;Toqqle
+ /SET * CNT /CLR /01 * /Og ;Toqgle
+ /SET * CNT /CLR * /02 * /og :Toqgle
+ /SET * CNT /CLR * /03 * /Og :Toqgle
+ /SET - CNT /CLR * /04 * /Og iToqqle
+ /SET .• CNT /CLR * /05 * /Og iToqqle
+ /SET .• CNT /CLR * /06 * /Og ;Toqgle
+ /SET .• CNT /CLR * /07 * /Og :Toqqle
+ /SET * CNT /CLR * /08 * /Og iToqqle
+ /SET -/CNT /CLR * /og iHold
+CLR ,CLR

TRACE ON OE CLK SET CLR CNT 00 01 02 Q3
- 04 05 06 07 08 og

SETF OE /CLR SET iset hiqh all the
CLOCKF CLK : registers

;Clear all the
ireqisters

: start countinq

FOR 1:- 1 TO 5 DO
BEGIN

CLOCKF eLK

Count for five
cycles. At the count
of four check for
four on the output.

IF 1-4 THEN
BEGIN
CHECK/00 /01 02

END
END

Page: 1
q cgcgc ccccg c

OE HHHHHHHHHH HHHHHHHRHH H
CLK XXHLLHLLHL HLHLHLHLLH L
SET HHHHHHHLLL LLLLLLLLLL L
CLR LLLLHHHLLL LLLLLLLLLL L
CNT XXXXXXXHHH HHHHHHHHLL L
00 XXXHHHLLLH HLLHHLLHHH H
01 XXXHHHLLLL LHHHHLLLLL L
02 XXXHHHLLLL LLLLLHHHHH H
Q3 XXXHHHLLLL LLLLLLLLLL L
04 XXXHHHLLLL LLLLLLLLLL L
05 XXXHHHLLLL LLLLLLLLLL L
06 XXXHHHLLLL LLLLLLLLLL L
07 XXXHHHLLLL LLLLLLLLLL L
08 XXXHHHLLLL LLLLLLLLLL L
Q9 XXXHHHLLLL LLLLLLLLLL L



runC1:lonal uesc:rlpllOn
Shown below is a schematic of two PAL devices implementing a
5-bit up asynchronous ring counter with programmable rollover,
asynchronous load, and reset. Initial count point can be loaded
by asserting ILD low. Rollover point is loaded by asserting ILR

low. Q4 ...QOand R4 ...ROarecompared in the PAL 16C1 which is
implemented as a comparator. The result of the comparison is
fed back from the PAL 16C1 to the PAL20RA10 device through
the IRST line. Note that a Master Reset must be executed first
before an initial count point can be loaded.

04}03
02
01
00

MSB
LPL vccJ

104
v~~

2 P4 0423
MR 18

~ 03 03 ~
203

NCV)NC
502 PAL 0220

302
PAL

NC-
401

LSB 601 20RA10 ~ 19 500
16C1

RST 16
7 ~~K

(ROLL 01) (ROLL 02)
COUNTER R4 18 6 R4 COMPARATOR NC lL}

: NC R317 7 R3 14NC :!t= NC
10 ~~

R2 :: 8 R2 NC
Rl14

9 Rl NC
E-

II RST

~~
RO ..!.!--

~GND

,..19
GND

,l-
-=-

LOADCOUNT{
OR LOAD

ROLLOVER
DATA

L.rUl...J1..
NC

LOAD COUNT
LOAD

ROLLOVER

PAL16Cl
ROLL02
COMPARATOR
MONOLITHIC MEMORIES IHe., SANTA CLARA, CA
Q4 Q3 Q2 01 QO R4 R3 R2 RI GND
RO He He He He IRST He He /KR VCC

EQUATIONS

PAL16Cl DESIGN SPECIFICATION
S-BIT COMPARATOR WITH KASTER RESET OVERRIDE
(SECOND OF THE TWO PALS SOLUTION ON THE 5-BIT COUNTER WITH
PROGRAMKABLE ROLLOVER, ASYNCHRONOUS LOAD AND RESET.)
MONOLITHIC MEMORIES IHe., SANTA CLARA, CA
BILL KARKULA 7/19/84

THIS DEVICE COMPARES 5 BITS OF DATA (R4 ... no) WITH Q4 •.• QO
AND ASSERTS IRST IF THEY ARE EQUAL. THEREFOP.E IRST
GOES LOW WHEN PROGRAMMED ROLLOVER POINT R4 ... no
HATCHES COUNT Q4 ••• QO. /RST ALSO GOES !.Oti WHEN /KR
GOES LOW, INDICATING A KASTER RESET.

NOTE: THIS PAL DESIGN SPEC WAS ASSEMBL·,m ON PALASK Vl.7.

Q4*/R4*/HR + /Q4*R4*/HR
+ Q3*/R3*/HR + /Q3*R3*/KR
+ Q2*/R2*/HR + /Q2*R2*/HR
+ Ql*/Rl*/HR + /Ql*Rl*/KR
+ QO*/RO*/HR + /QO*RO*/HR

FUNCTION TABLE

;COMPARE Q4
;COMPARE Q3
iCOHPARE Q2
iCOHPARE Ql
iCOHPARE QO

R4 KSB
R3
R2
Rl
RO LSB

/
: / R
: QQQQQ RRRRR M S
;43210 43210 R T

HLLLL LLLLL H H
LHLLL LLLLL H H
LLHLL LLLLL H H
LLLHL LLLLL H H
LLLLH LLLLL H H
!..LLLL HLLLL H H
LLLLL LHLLL H H
LLLLL LLHLL H H
LLLLL LLLHL H H
LLLLL LLLLH H H
LLLLL LLLLL H L
HHHHH HHHHH H L
LHLHL LHUfL H L
HLHLH HLULU H L
LLLLL HHHHH L L
HHHHH LLLLL L L

1 Q4=H, R4=L
2 Q3-H, R3-L
3 Q2-H, R2-L
4 Ql=H, RI-L
5 QO-H, RO-L
6 Q4-L, R4-H
7 Q3-L, R3-H
8 Q2=L, R2""H
9 QI-L, RI-H

10 QO;L, RO=H
11 TEST ALL LOWS
12 TEST ALL HIGHS
13 TEST EVEN CHECKERBOARD
14 TEST ODD CHECKERBOARD
15 TEST MASTER RESET
16 TEST MASTER RESET

El



Title 5-Bit Up Counter
Pattern Upcount.pd..
Revision A
Author Bill Karkula
Company Monolithic Memories Inc., Santa Clara, CA
Date 7/19/8.

CHIP UpCounter PAL2ORAIO

IPL 04 OJ 02 01 DO CK NC ILD ILR IRST ONO
IOE RO Rl R2 RJ R4 00 01 02 OJ 04 VCC

EOUATIONS

104 :- 04
04.CLKF - 10J
04.RSTF - RST
Q4.SETF - D4*LD

10J :- OJ
OJ. CLl<F - 102
Q3.RSTF - RST
03.SETF - D3*LD

102 :- 02
02.CLl<F - 101
Q2.RSTF - RST
02.SETF - 02*LD

101 :- 01
Ql.CLKF - 100
01. RSTF - RST
Ol.SETF - 03*LD

100 :- 00
OO.CLl<F - CK
OO.RSTF - RST
OO.&ETF - OO*LD

IR4 :- 104
R4.C::LKF -LR
IRJ :- 10J
R3.CLKF -LR
IR2 :- 102
R2.CLXF -LR
IRl :- 101
Rl.CLl<F -LR
IRO :- 100
RO.CLKF -LR

;Toggle if lower KSB
;becomes a zero
;Rollover/master RST
iLoad initial Count

:Toggle when Q2
:becom.s a zero
:Rollover/maater RST
:Load initial count

iToggle when Q1
ibecomea a zero
:Rollover/master RST
:Load initial count

;Toggle when 00
;becomes a zero
;Rollover/master RST
;Load initial count

:Toggle LSB
:External CLKFinput
:Rollover/master RST
:Load initial count

:Load rollover point
; if /LR is low
:Load rollover bit 3
; if /LR is asserted
;Load rollover bit 2
; if /LR is asserted
;Load rollover bit 1
; if /LR is asserted
:Load rollover bit 0
: if /LR ia asserted

TRACE_ONPL OE CK QOQl 02 03 O.

SETF RST /LD ;Test SET function
;of register.
;Check for high
IOn reg. outputs
;Oeassert SET tunct

CHECK 00 01 02 OJ 04

SETF IRST

SETF 00 01 D~ 03 D. LD
CHECK 100 101 102 10J 104

SETF IOE 04 OJ 02 01 100 ILD Disable RESET(Le-O)
load registers w/
IOOIHL (04 •• 00).
tristate registers
Load reg. '. w/ data
on output bus.
Disable PRELOAD,
TRISTATEfunct.

SETF OE IPL

SETF CX
SETF /CX

SETF CX
SETF /CR

SETF CR
SETF /CX

SETF CX:
SETF /CR

qqqqqqq qqqq qq
PL XXXXXXXHLL LLLLLLLLLL LLL
OE XXXXXLLLHH IfiIHHHH1D{}UiHHH
CR XXXXXXXXXH HHLHHLHHHH LHH
QO HHHLLZZLHH LLLLHHHLLL LLH
01 HHHLLZZHLL LIOOIHHHHLLLLL
02 HHHLLZZHLL LLLLLLLLLH HHH
03 HIDlLLZZHLL IT IT IT IT IT LLL
Q4 HHHLLZZHLL LLLLLLLLLL LLL

Pi: VCC

04 04

03 03

02 02

01 01

DO QO

CK R4

NC R3

ill R2

[R R1

RST RO

GNO OE

Monolithic W Memories



Functional Description
Shown below isa schematic of two PALdevices implementing a
5-bit up asynchronous ring counter with programmable rollover,
asynchronous load, and reset. Initial count point can be loaded
by asserting ILD low. Rollover point is loaded by asserting ILR

1 Pi:
2 P4

~ D3
5 D2
6 D1

7 ~~K

: NC

10 ~~
11 RsT
12 GND

PAL
20RA10

(ROLL 03)

VCC 24

04 ~
0321
0220
0119

~~ 18
R3 17
R2 16
R1 15
RO 14

'OE 13

LOADCOUNT{
OR LOAD

ROLLOVER
DATA

-uuuL
NC

LOAD COUNT
LOAD

ROLLOVER

low. 04 ...00 and R4...ROare compared in the PAL16C1 device
which is implemented as a comparator. The result of the
comparison is fed back from the PAL16C1 logic circuit to the
PAL20RA10 device through the IRST line. Note that a Master
Reset must be executed first before an initial "countdown" point
can be loaded.

04}
~~ COUNTER
01 OUTPUT

00

v~~
MR
NC 18
NC 17

PAL
16C1 -16

(ROLL 02) RST 15
COMPARATOR ~~ 14

NC 13
NC 12

PAL16Cl
ROLL02
COMPARATOR
MONOLITHIC MEMORIES INC., SANTA CLARA, CA
04 03 02 01 00 R4 R3 R2 Rl GND
RO Ne He He Ne /RST He Ne /MR VCC

EQUATIONS

04*/R4*/MR + IOVR4*/MR
+ Q3*/R3*/MR + /Q3*R3*/MR
+ Q2*/R2*/MR + JQ2*R2*/MR
+ Ql*/Rl*/MR + /Ql*Rl*/MR
+ QO*/RO*/MR + /QO*RO*/MR

FUNC'tIoN TABLE

; COMPARE Q4 & R4 MSB
; COMPARE Q3 & R3
; COMPARE Q2 & R2
; COMPARE Q1 & RI
; COMPARE QO & HO LSB

04 03 02 01 00 R4 R3 R2 Rl RO /1lR IRST

1
; 1 R
;00000 RRRRR H 5
;43210 43210 R T

HLLLL LLLLL H H 1 Q4-H, R4~L
IJiLLL LLLLL H H 2 Q3-H, R3-L
LIJiLL LLLLL H H 3 02-H. R2-L
LLIJiL LLLLL H H 4 01-H. RI-L
LLLLH LLLLL H H 5 QO-H, RO-L
LLLLL HLLLL H H • 04-L. R4-H
LLLLL LHLLL H H 7 03-L, R3-H
LLLLL LLHLL H H 8 02-L, R2-H
LLLLL LLLHL H H 9 QI-L, RI-H
LLLLL LLLLH H H 10 QO-L, RO-H
LLLLL LLLLL H L 11 TEST ALL LOWS
HHHHH HHHHH H L 12 TEST ALL HIGHS
LHLHL LHLHL H L 13 TEST EVEN CHECKERBOARD
HLHLH HLHLH H L 14 TEST ODD CHECKERBOARD
LLLLL HHHHH L L 15 TEST KASTER RESET
HHHHH LLLLL L L ,. TEST KASTER RESET

PAL16Cl DESIGN SPECIFICATION
5-BIT COMPARATOR WITH MASTER RESET OVERRIDE
(SECOND OF THE TWO PAlS SOLUTION ON THE 5-BIT COUNTER WITH
PROGRAMMABLE ROLLOVER, ASYNCHRONOUS LOAD AND RESET.)
MONOLITHIC MEMORIES INC., SANTA CIARA, CA
BILL KARKULA 7/19/84

THIS DEVICE COMPARES 5 BITS OF DATA (R4 ... RO) WITH Q4 ... QO
AND ASSERTS /RST IF THEY ARE EQUAL. THEREFORE /RST
GOES LOW WHEN PROGRAMMED ROLLOVER POINT R4 •.. RO
MATCHES COUNT Q4 ... QO . /RST ALSO GOES LOW WHEN /MR
GOES LOW, INDICATING A KASTER RESET.

NjTE: THIS PAL DESIGN SPEC WAS ASSEMBLED ON PALASH VI. 7.

Monolithio W Memories



Pattern
Revision
Author
company
Date

OCount.pd.
A
Bill I<arkula
Monolithic Memori ••
7/19/84

CHIP ON_COUNTER PAL20RAIO

/PL 04 03 02 01 DO CI< NC /UJ /LR /RST GND
JOE RO Rl R2 R3 R40 00 01 Q2 Q3 04 VCC

EQUATIONS

/Q4 :- Q4
Q4. CLI<F - Q3
04.SETF - RST
Q4.RSTF - /D4*LD

/Q3 :- Q3
Q3.CLKF - Q2
Q3.SETF - RST
03.RSTF - IDJ*LD

/Q2 :- Q2
Q2. CLI<F - Q1
Q2.SETF - RST
Q2.RSTF - /02*UJ

/Q1 :- Q1
Ql. CLI<F - QO
Ql.SETF - RST
Ql.RSTF - IDl*LD

/QO :- QO
QO.CLI<F - CK
QO.SETF • RST
QO.RSTF - /OO*LD

/R4 :- /04
R4.CLKF -LR
/R3 :- /03
R3. CLI<F -LR
/R2 :- /02
R2.CLI<F -LR
/R1 :- /01
Rl. ClJ(F -LR
/RO :- /00
RO.CLKF -LR

SIMULATION

TRACE_ON PL OE CK QO Q1 Q2 Q3 Q4

SETF RST /UJ

CHECK /QO /Q1 /Q2 /Q3 /Q4

SETF /RST
SETF /00 /01 /02 /03 /04 LD
CHECI< 00 01 02 Q3 Q40
SETF /OE /Q4 /Q3 /Q2 /Q1 QO /LD

SETF OE /PL

FOR 1:-1 TO 7 00
BEGIN

SETF CI<
SETF ICI<
IF 1-2 THEN

BEGIN
CHECK Q4 Q3 Q2 /Q1 /QO

END
IF 1-6 THEN

BEGIN
CHECK Q4 Q3 /Q2 /Q1 /QO

END
IF 1-7 THEN

BEGIN
CHECK Q4 /Q3 Q2 Q1 QO

END
END

;Toggle if lower MSB
:becomes a one
:Rollover/master RST
; Load initial count

;Toggle when 02
; Becomes a one
;Rollover/master RST
:Load initial count

:Toggle when Ql
:becomes a one
:Rollover/master RST
; Load initial count

:Toqgle when QO
;beco.es a one
;Rollover/master RST
; Load initial count

;Toggle LSB
;External clock input
;Rollover/master RST
: Load initial count

;Load rollover point
; it /LR is low
;Load rollover bit 3
; it /LR is asserted
; Load rollover bit 2
; if ILR is asserted
; Load rollover bit I
: it ILR is asserted
;Load rollover bit 0
: it /LR i. asserted

;Test SET function
;ot registera
;Check tor high on
; register outputs
; Deassert SET funct
;Test RESET funct.

; Disable RESET, load
:registers w/ LLLIJI,
; tristate regiaters
;Load rega w/ data
ion output bus.
; Disable PRELOAD &
:TRISTATE function.
; Initially load regs
;w/ LLLLH , clocked
;7 times.
:Rollover at 1-2
; count goes LLLLL
;to HHHHH.
;Check rollover pt.

99999999999 99999999 9
PL XXXXXXXHLL LLLLLLLLLL T T T T T T T T T T LLLLLLL
DE XXXXXLLLHH HHHHHHHHHH HHHHHHHHHH HHHHHHH
CI< XXXXXXXXXH HHLHHLHHHH LHHIJIHHLHH LHHHHHL
QO LLLHHZZHLL HHHHLLLHHH HHLLUlHHHL LLHHHHH
Ql LLLHHZZLHH HLLLLLLLHH HHHHHHLLLL LLlJIHHH
Q2 LLLHHZZLHH HHHHHHHHHL LLLLLLLLLL LLLLHHH
03 LLLHHZZLHH HHHHHHHHHH HHHHHHHHHHHHHHHLL
Q40 LLLHHZZLHH HHHHHHHHHH HHHHHHHHHH HHHHHHH



This application is for a seven-bit register with handshake logic.
The chip can be used for interfacing between a microprocessor
and its peripheral I/O. The on-chip flag flip-flop provides the
handshaking capability required in typical demand-response-
based data transfer. Both the register and the flag flip-flops are
asynchronously cleared by CLR signal.

ClR

DClK

and at the same time, the event is signified by asserting DRDY
signal. The DRDY signal indicates that the data is available in the
register. By monitoring the DRDY signal when it is high, the
stored input data can be transferred to Q output port by asserting
JOE three-state control signal. After moving the data, DACK
signal should be applied to clear the flag flip-flop.

Monolithic W Memories



Title
Pattern
Revision
Author
company
Date

7-Bit 110 Port with Handshake Logic
port.pds
A
Sadahiro Horiko I Kelvin ChoW'
Monolithic Memories Inc., Santa Clara, Ca
3/1/85

Page 1
9999999

CLR HHHHLLLLLL L
QO XZZLLLLLLL L
Ql XZZLLLHHHH H
Q2 XZZLLLLLLL L
Q3 XZZLLLHHHH H
Q4 XZZLLLLLLL L
Q5 XZZLLLHHHH H
06 XZZLLLLLLL L
DCLK LLLLLHHLLL L
CRDY XLZZLHHHHL L
DACK LLLLLLLLHH L

PL 00 01 02 03 04 05 06 CE DeLI< CLR GNO
OE OACK DRDY NC 06 05 04 Q3 Q2 Q1 QO VCC

EQUATIONS

QO :- 00 :LSB of 7-bit regs
QO.CLKF - OCLl( :External clock
QO.SETF -CLR :Clear register
QO.TRST - CE :Tristate control

Ql :z 01 :Data 1
Ql.CLKF - oCLK : External clock
Ql.SETF z CLR : Clear register
Ql.TRST - CE :Tristate control

Q2 :- 02 :Oata 2
Q2.CLKF - DCLl( : External clock
Q2.SETF -CLR :Clear register
Q2.TRST - CE :Tristate control

Q3 := 03 :Data 3
Q3.CLl(F - DCLl( : External clock
Q3.SETF = CLR :Clear register
Q3.TRST - CE :Tristate control

Q4 :z 04 :Data 4
Q4.CLKF - DCLK : External clock
Q4.SETF - CLR :Clear register
Q4.TRST - CE :Tristate control PL VCC
QS :- 05 :Cata 5
Q5.CLKF - DCLl( : External clock DO CO
QS. SETF -CLR :Clear register
Q5.TRST - CE :Tristate control 0101
Q6 ;- 06 :Data 6
Q6.CLKF - DCLl( ;External clock 02 02
Q6.SETF -CLR : Clear register
Q6.TRST - CE :Tristate control

03 03
DROY :- GND ;Handshake logic
DRDY.CLl(F - DACK ; Cleared by DACK 04 Q4
DRDY.RSTF - DCLK . ;Clear
DRDY.SETF = CLR :Asserted by DCLK

DRDY.TRST - VCC ; (External clock) 05 05

SIMULATION 06 Q6

TRACE_ON CLR QO Ql Q2 Q3 Q4 QS Q6 DCLl{ DRDY DACK CE NC
SETF PL ICE JOE /00 01 /02 03 /04 05 /06 CLR /DCLK /oACK

:Set input values OCLK OROY
:Tristate outputs

SETF CE OE CLR ; Remove the tr i- CLR OACK
: states on the
: outputs and clear GNO OE
:registers

SETF CLR
SETF CLR

SETF ICLR :Clock the data'
SETF DeLl{ : set OROY register
SETF DCLK

SETF IOCLl{ ; Remove the clock

SETF DACK :Assert DACK
SETF DACK

SETF /DACK :Lower DACK
SETF /OACK



Functional Description
Original application was developed by LTT, Conflans Ste. Hon-
erine, FRANCE. Part of the schematics, reprinted with courtesy
of LTT, is used to control aserial data link based upon aspecial-
ized LSI chip.

Originally designed with six standard SSI/MSI circuits, this
same function can now be implemented, not only into a single
PAL20RA10 device, but with even more features and better
performance. The function can be divided into three sub-
functions:

1. Address Decoding
2. Control Flags
3. Transmission Speed Selection

Up to four address lines are allowed (eight were actually used),
plus two extra lines which are special decoding controls
(MEM/IO selection, Enable Control ... ). Two flip-flop load flag
conditions, from the address bus (A1 and A2), providing hand-
shake between the 6850 UART and the communication lines.
They have a common clock which also serves as Chip Select
(CSO) for the UART.

The UARTTransmit clock (TXCLK) can be directly connected to
the Receive Clock (CK or RXCLK) or represents the Receive
Clock value divided by sixteen. This function was performed by
four D-type Flip-Flops connected as a 4-stage Asynchronous
Divider. Since each basic cell, used in a PAL20RA10device has
four ProductTerms available,this function could be implemented
either asynchronously or synchronously. In the PAL Design
Specification example, a 4-bit synchronous divider was used
instead of the asynchronous circuit shown in the schematic.

Pin Description
1. TEST Allows preload function for testing.
2. SYSRESET Reset line from microprocessor.
3. A2 Address line from address bus.
4. A1 Address line from address bus.
5. HDSHAKE Handshake line (CTS/RTS).
6. CK External clock.
7. E Enable line from microprocessor.
8. AUXDECOD Extra decoding line

(e.g. board level decoding).
9. A3 Address line from address bus.

10. A4 .......•....... Address line from address bus.
11. A5 .......•....... Address line from address bus.
12. GND Reference power supply ground.
13. IOE Output enable line.
14. A6 Address line from address bus.
15. SPEEDSEL . . . . . . .. Speed selection line.
16. DIV4 MSB 4-bit synchronous counter.
17. DIV3 .......•..... 3rd stage synchronous counter.
18. DIV2 2nd stage synchronous counter.
19. DIV1 LSB 4-bit synchronous counter.
20. CSO UART chip select line (CSO).
21. BLOCREC Bloc receive line.
22. DIR DIV Direct or divided clock.
23. ITPH External use flag.
24. VCC ........•..... 5 V power supply.



AS

A4
A3

AUXOECOO

SYSRESET
A2
A1

AUXOECOO
A3
A4
AS

AD

HOSHAKE

OCO
RXO
TXO
CK

Tph
OIROIV
BLOCK REC.

CSO RIS
CS1 RTS
ffi CTS
E OCO
RtW RXO
IRQ TXO
00 RXCLK
01

02 TXCLK
03
04
05 6850
06
07

,-----------------,
I I
I I
I I
I I
I I

IL ~
NOTE: Alynchronoul Divider

TEST IT ~VCC

" ", "
" ", ,

· PAL HC
2ORA10 HC· , HC

· "
" "
" m IOEGNO II

,- L-- CSO RIS~

+SVT CS1 RTS .----J
CS2 CTS
E DCii
RtW RXO
IRQ TXO
00 RXCLK

1 01 .t.
02 TXCLK
03 0
04

5 05 6850
06

7 07

Monolithic W Memories



Title
Pattern
Revision
Author
Company
Date

Serial Data Link Controller
Link.pds
A
Jose Juntas / Kelvin Chow
Monolithic Memories Inc., Santa Clara, Ca
3/1/85

CHIP SE_CH_CNTRL PAL20RAIO

TEST SYSRESET A2 A1 HDSHAKECK E AUXDECODA3 A4 AS GND
10E A6 SPEEDSEL DIV4 DIV3 DIV2 OIVl CSO BLOCREC OIRDIV
/TPH VCC

EQUATIONS

ITPH
/TPH.CLKF
/TPH.SETF

DIRDIV
DIRDIV. CLKF
DIRDIV. SETF

IDIV1

IDIVl. CLl<F
IDIVl.SETF

IDIV2

IDIV2.CLKF
/DIV2.SETF

/DIV3 •CLl<F
/DIVJ. SETF

IDIV.

:- A2
- CSO
- SYSRESET

:- Al
- CSO
- /HDSHAKE

:Load A2 as flag
:CLl< W/ ADOR. decode
:global system reset

;Load speed ratio
: CLK W/ ADOR. decode
iCLR by CTS/RTS line

•• /DIRDIV i Controlled by speed
+ HOSHAKE i option and CTS/RTS

iline
•• /A6*AS*A4-AJ*AUXOECOO*E

iUART address valid
:- DIVl i4-bit synchronous

idivider LSB
- CK :CLK by CK(external)
- /DIRDIV iCLR by speed option

:- /DIV1*/DIV2
+ DIVl*DIV2
- CK
- IDIRDIV

: - IDIV2. IDIV3
+ /DIV1*/DIV3
+ DIV1*OIV2*DIV3
- CK
- IDIRDIV

:- /DIVJ*/DIV4
+ /DIV2*/DIV4
+ /DIV1*/DIV4
+ DIVl*DIV2*OIV3*DIV4
- CK
- IDIRDIV

SPEEDSEL : - /Al
SPEEDSEL.CLKF •• CSO

SPEEDSEL. SETF - /HOSHAKE

SIMULATION

i 2ND stage of
idivider
i CLl< by eK (external)
: CLR by speed option

: Load speed choice
;CLK W/ ADDR. decode

:CLR by CTS/RTS line

TRACE ON Al,A2,A3,A4,AS,A6,E, :signals to be
- AUXDECOD,SYSRESET, /TPH, HDSHAKE, : observed

CSO, SPEEDSEL, DIRDIV , CK,
DIV1, DIV2, DIVJ , DIV4

SETF SYSRESET,/HDSHAKE ;Reset all regs

CHECK /SPEEDSEL, /DIRDIV , TPH
SETF /SYSRESET,Al,A2,A3,A4,AS,/A6,HDSHAKE, iSet decode

E, AUXDECOD i condition

CHECK /SPEEDSEL,DIRDIV

FOR 1:-1 TO 15 DO
BEGIN

SETF CK

; Check SPEEDSEL and
: DIRD1V regs

iThis portion
isi1D.ulates divide
:by four counter

qq qqq qqqqqqqqqqqqqq qqqqqq
Al XXHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
A2 XXHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
A3 XXHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
A4 XXHHHHmiHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
AS XXHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
A6 XXLLLLLLLL LLLLLLLLLL T T T T T T T T T T LLLLLLLLLL
E XXHHHHHHlUIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
AUXDECODXXHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
SYSRESET HHLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL

ITPH LLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
HDSHAKE LLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
CSO XXHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
SPEEDSEL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
DIRDIV LLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
CK XXXXXlUiLHHLHHLHHLHHLHHLHHLHHLHHLHHLHHLHH
D1Vl XLLLLLHHHL LLHHHLLLHHHLLlJIHHLLL HHHLLLHHHL
DIV2 XLLLLLLLLH HHHHHLLLLLLHHHHHHLLLLLLHHHHHHL
DIV3 XLLLLLLLLL LLLLLHHHHHHHHHHHHLLLLLLLLLLLLH
DIV4 XLLLLLLLLL LLLLLLLLLL LLLLLLLHHH HHHHHHHHHH

qqqqqqq
Al HHHHHHHHHH
A2 HHHHHHHHHH
A3 HHHHHHHHHH
A4 HHHHHHHHHH
AS HHHHHHHHHH
A6 LLLLLLLLLL
E HHHHHHRHHH
AUXDECODHHHHHHmiHH
SYSRESET LLLLLLLLLL

ITPH HHHHHHHHHH
HDSHAKE HHHHHHHHHH
eso HHHHHHHHHH
SPEEDSEL LLLLLLLLLL
DIRDIV HHHHHHHHHH
CK LHHLHHLHHL
DIVl LLHHHLLLHH
D1V2 LLLLlJIHHHH
DIVJ HHHHHHHHHH
DIV4 HHHHHHHHHH

lEI

TEST VCC

SYSRESET TPH

A2 DIRDIV

Al BLOCREC

HDSHAKE CSO

CK DIVl

E DIV2

AUXDECOD DIV3

DIV4

SPEEDSEL

AS

OE

Monolithic W Memories



Functional Description
One of the more widely used computer families is the Digital
Equipment Corp.'s PDP-11series.This family of computers uses
the DEC unibus to communicate between cards. A specific
protocol is required to interface a card to the unibus. This
protocol is described in the available DEC literature.

Since the unibus is an asynchronous bus, much of the interface
circuitry consists of combinational logic to generate specific
signals and flip-flops which are set and reset as flags. This tends
to use a lot of SSI and MSI logic packages. Using Monolithic
Memories' PAL devices, much of this logic can be condensed
into a few packages. Figure 2 is the schematic diagram for an
interrupt Controller to be used on the unibus. (p.6-30of the 1976
DEC PDP-11 Peripherals Handbook.)

Many cards communicate over the bus by taking control of the
unibus with an interrupt request, and then do whatever they
require before releasing control. As can be seen, this interrupt
controller takes six special interface ICs, (380 and 8881 bus

drivers and receivers) eightMSl,SSllCs, (7400,7402nad7474s)
along with some transistors and discrete parts. This parts count
can be considerably reduced by using PAL20RA10 and
PAL20L10 devices.

Figure 1shows how the circuit with the PALdevices would look.
The two PALdevices allow almost all of the 7400,7402 and 7474
packages to be removed. (Almost a 4-1 saving in chip count.)
In add ition the preload pin (PRLD) on the 20RA10allows the flip-
flops to be easily set to a known state on power up, or when
re-initializing. So the PAL devices reduce the logic package
count from eight chips to three.

This shows that by using PAL devices substantial space and
circuit savings can be realized when interfacing to the unibus.

In the schematic shown, thre are three VLSI devices, three MSls
and two SSls. Using a PAL20RA10 logic circuit, it is possible to
replace three MSls and one SSI device, thereby reducing the
chip count by a factor of two. The ICs inside the enclosed loop
were replaced.

MonolithicWMemories



INTRAH 1 24 VCC

INTRAHEN 2 23 NBGINBH

MCLEARAH 3 22 ENINTRA

INTRBH 4
INTRBHEN 5

MCCLEARBH 6
FF1RESET

7 21
NBGINBH

20

PAL 19
SSYN

20L10 EN8881
18

17 INTROONEAH
16 INTROONE BH

ENINTRB
15

FF3RESET
14

10

PRELOAD 24 VCC 8881
23 FF1

AINTR FF2 BUSBBSYL
22

NC NFF2
ABGIN

21
BUSSACKL

FFIRESET

FF4
SSYN 20

PAL
2ORA10 NFF4

~: FF3
BINTR

17
BUSBRALNC

FF3RESET

BBGIN
BUSBRBL10

NC 11
12

MASTERAL

7400 IE]MASTERBL

VCC

BGOUTAH

BGOUTBH

START INTRBL

8881
BUS 001 L BUS 008 L

8881 8881
BUS 002 L BUS 007 L

8881 8881
BUS 003 L BUS 006 L

8881 8881
BUS 004 L BUS 005 L

PAL20LIO
INTRPOI
INTERRUPT LOGIC
MONOLITHIC MEMORIES INC., SANTA CLARA, CA
INTRAH INTRAHEN MCLEARAH INTRBH INTRBHEN MCLEARBH BGINBH
BGINAH BUSSSYNL BUSBBSYL STARTINTRAL GND
STARTINTRBL FF3RESET ENINTRB INTRDONEBH INTRDONEAH EN8881
SSYN HBGINSH FFlRESET ENINTRA NBGINAH VCC

COMBINATORIAL LOGIC FOR PAL20RAIO INTERRUPT CONTROLLER
(1ST PART OF THE TWO PALS SOLUTION: PAL20LIO , PAL20RAIO)

MONOLITHIC MEMORIES INC .• SANTA CLARA, CA
DAN KINSELL.\. 7/19/84

NOTE: THIS PAL DESIGN SPEC WAS ASSEMBLED ON PALASM Vl. 7.

EQUATIONS

/NBGINAH

/FFIRESET

; FFI eLK CONTROL
; BLOCK A
i SET FFI CONTROL
; aLOCK A
:-ENABLE INTERRUPT A

- BGINBH ; FF3 CLOCK CONTROL
; aLOCK B

BUSSSYNL*aUSBBSYL :S¥NCHRONIZE FF2 &
; FF4

- STARTINTRAL*STARTINTRBL
; INTERRUPT BUS

,. BUSSSYNL+STARTINTRAL ;SIGNAL INTERRUPT
; DONE

•.• INTRBH*INTRBHEN iENABLE INTERRUPT B

IEN8881

I INTRDONEAH

IENINTRB

IFF3RESET

/INTRDONEBH

'" MCLEARBH+ENINTRB SET FF3 CONTROL
BLOCK B

••• BUSSSYNL+STARTINTRBL SIGNAL INTERRUPT
DONE

Monolithic W Memories



INSiDE PAL20RA10

LINSIOE~~~~.~.~~ .••••.•..••.•..••..•..•..•••..•..................••................ L..··..···..···..········7402"':
r-- ----., IAINTR 7400 i

BUS BBSYL

MASTERAL

17400
I
I
I
I
I
I
I
I
I

I
:~ INSIDE PAL20Ll0

INTR DONE B H I

START INTR A L
START INTR B L

VECTOR BIT 2

I

7400 I
L ~

8881 BUS 002 L

8881 BUS 003 L

8881 BUS 004 L

8881 BUS 005 L

8881 BUS 006 L

8881 BUS 007 L

8881 BUS 008 L



Title
Pattern
Revision
Author
company
Date

DEe POP-II unibus interrupt controller
Control. pds
A
Dan Kinsella
Monolithic Memories Inc., Santa Clara, CA
3/1/85

CHIP INTR_CONTROL PAL20RAIO

PL AINTR He ABGIN FFlRESET SSYN BINTR He FF3RESET BBGIN
He GND
He OUT4 OUT3 OUT2 OUTl FF3 NFF" FF4 NFF2 FF2 FFI VCC

EQUATIONS

IFFl :- JFF1*FF2 ;Master control
FFl.SETF - IFFlRESET ;block A
FFI.eLKF - IABGIN

FF2 :- FFl ;Bus BUsy Signal
FF2.SETF - IAINTR
FF2.eLKF - ABGIN*PF2*/SSYN

INFF2 :- FFI ;8us sack. signal
NFF2.SETF - IAINTR
NFF2.CLKF - ABGIN*NFF2*/SSYN

IFF3 :- IFF3·FF4 ;Kaster control
FF3. SETF - /FF3RESET ;block B
FF3.CLKF - IBBGIN

FF4 :- FF4 ;Bus bUsy signal
FF4.SETF - IBINTR
FF4.CLKP' - BBGIN*FF4*/SSYN

INFF4 :- FF3 ;Bus sack signal
NFF4.SETF - IBINTR
NFF4. eLKF - BBGIN*NFF4*/SSYN

IOUTl - FFl+FF2 ; Bus reques t signal
;block A

IOUT2 - FF4+FF3 ; Bus request signal
:block B

IOUT3 - AINTR ;Intr. signal for
;bus req. block A

IOUT4 - BINTR ;Intr. signal for
;bus req. block B

SETF /FFIRESET /FF3RESET AINTR BINTR

SETF FFIRESET FF3RESET /AINTR /BINTR
ABelN BBGIN

999
FFIRESET LHHH
FF3RESET LHHH
AINTR HLLL
BINTR HLLL
SSYN XXXL
ABelN XHHH
BOO IN XHHH
FFl LLLL
FF3 LLLL
NFF2 XLLL
NFF4 XLLL
OUTl XHHH
OUT2 XHHH
OUT3 LHHH
OUT4 LHHH

PL VCC

AINTR FF1

NC FF2

ABGIN NFF2

FF1RESET FF4

SSYN NFF4

BINTR FF3

NC oun

FF3RESET OUT2

BBGIN OUT3

NC OUT4

GND NC



Video Frame Grabber

High performance Programmable Array Logic devices are
powerful building blocks for video system applications. In this
paper a tutorial approach is taken to describe the synthesis of a
personal computer-based video digitizer peripheral. The design
exercise features typical video frame buffer functional modules
such as a time base generator. memory address generator and

memory control logic which are integrated into a single Mega-
PAL'· device. To maximize the information transfer from this
tutorial the reader should be moderately familiar with general
PAL design concepts. however. a minimal amount of video
knowledge is required to grasp the design implementation.

TWX: 910-338-2376
2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

Monollthlc~lIn
MemorIes In.In.U



Hello my name is Alfie Gilbert. That is me on the right
with my supervisor, John Birkner. John co-invented the
PAL logic circuit back in 1977 and has championed these
remarkable devices ever since. As a token of MMI's
appreciation of John's effort, he drives a PORSCHE CARRERA
which is quite a beautiful car. Not bad John, not bad at all!
If you take the time to ask John how one might be so
lucky as to be handed the keys to a turbo, he will answer
you in one word, INNOVATE. So how do I innovate my way
into a Porsche you are probably wondering? If you are a
mature electronic engineer, you no doubt have some strong
ideas and some direct innovative work experiences to serve
as guidelines. Students and recent graduates however face
a little different challenge. Although these individuals
typically have few preconceptions about what is feasible,
which is quite an asset, they often have not experienced
the design process.



•• •• ••••••__ .• y __ w,oO:J Q .;J,U,VW-a.llU-J..~~~·· ues~gn

exercise to familiarize the novice designer with some of
the tradeoffs and "tricks-of-the-trade" involved with
logic design. If you are a student, I hope this application
will help focus your creativity into something rewarding
like John's car. GO FOR IT!
As you probably noticed by now, this application note is
written in the literary first person which is very unusual
for technical sUbjects. I chose this style because I wanted
to relate to you directly, designer to designer. Although
I am presently employed as an applications specialist , I
enjoy teaching electronics as a second career, which over
the years has put me in direct contact with many students
who seem to share one thing in common , the desire to
invent something. PAL devices from the student perspective,
are ideal vehicles for creative design because they directly
realize digital logic equations in silicon. If a design
can be described with Boolean algebra or state equations,
it can be built with PAL devices. All this magic is made
possible by systematically burning out a fuse array , the
height of simplicity in ASIC design.

PAL logic circuits participate in a segment of the
semiconductor marketplace known as ASICs , which is an
acronym for Application Specific Integrated Circuits.
Programmable Array Logic, Gate Array, Standard Cell, and
Full Custom technologies compete for market share in the
ASIC arena. Typically, ASICs implement the functionality
that would occupy a whole circuit board of standard MSI
logic onto a single chip. Of the four ASIC technologies, PAL
devices are by far the simplest to use. PAL-based designs
typically can be implemented in a far shorter time frame than
with the other three alternatives. Development systems for
PAL designs are less expensive as well. A typical PAL
development system consists of a personal computer and a
programming unit. This FRAME GRABBER design exercise,
for example, was done using a COMPAQ computer, a VARIX
programmer, and a TEKTRONIX scope. The pearl of wisdom
which I would like to pass on to the reader is simple: No
matter what you are designing or what technology (ASIC or
standard logic) you use to design, it is easier to prototype
the design with PAL devices. Any designer will tell you that
PALs ARE GREAT BUILDING BLOCKS. Pros also know that true
artists SHIP thier product FIRST. This is known as opening
the window of opportunity and it is very crucial to the
success of a product. The following is an excerpt from the
Macintosh Design Case History article which appeared in
IEEE SPECTRUM DECEMBER 1984. If you have a chance, read the
entire article.



The computer's circuit density was one bottleneck. Mr.
smith had trouble paring enough circuitry off his first
two prototype to squeeze them onto one logic board ••.
Another problem with the Macintosh display was its
limited dot density .••
Mr. smith could think of but one alternative: combine
the video and other miscellaneous circuitry on a single
custom n-channel MOS chip. Mr. Smith began designing
such a chip in February 1982. During the next six months
the size of the hypothetical chip kept growing •..
After thinking about the problem for three months, Mr.
smith concluded in July 1982 that "the difference in
size between this chip and the state of Rhode Island is
not very great." He then set out to design the circuitry
with higher-speed programmable array logic--as he had
started to do six months earlier. He had assumed that
higher resolution in the horizontal video required a
faster clock speed. But he realized that he could
achieve the same effect with clever use of faster
bipolar-logic chips that had become available only a
few months earlier. By adding several high speed logic
circuits and a few ordinary circuits, he pushed the
resolution to 512 dots.
Another advantage was that the PALs were a mature
technology and their electrical parameters could
tolerate large variations from the specified values,
making the Macintosh more stable and more reliable--
important characteristics for a so-called appliance
product.

The fellow referred to as Mr. smith in the excerpt from
SPECTRUM is Burrell smith. It is amusing that Burrell's
business card really does read "HARDWARE WIZARD" which
is a fairly accurate title considering his handiwork. He
and Andy Hertzfeld (computer cult heroes out here in
Silicon Valley) wrote a great technical description of
the Macintosh system Architecture and System Software for
BYTE Magazine, February 1984 (Volume 9, Number 2). I
encourage you to reference that issue to get some insight
into how creatively PALs may be employed in system design.
The six PAL devices which are designed into the Macintosh
are a lot more than "glue logic". They form the core of the
video graphics/bus management hardware. I can not elaborate
too much more on the functionality of the Macintosh PAL set
without tOUChing on some proprietary SUbjects, so I won't,
other than to mention that the MAC PAL devices are all from
the "20 pin" family, PAL16R8-type parts. As you probably
guessed, I own a MAC (as well as several other computers
which I keep for historical reasons) really like it, and
respect its designers. NICE WORK FOLKS!



Technology has a way of marching on, with us or without
us, therefore a substantial part of the design challange
is often in picking the technological alternative which
is most in league with the future. When Burrell smith
designed the MAC's PAL set (back in 1982) the industry
"workhorse" was the PAL16R8/PAL16L8 family of parts.
The big advances at that time were in the speed area,
fast (A) PAL devices which featured a propagation delay of
only 25 ns were novel. Of course today in 1985
we have even faster (B) PAL logic circuits which save yet
another 10 ns of the propagation delay resulting in a
blazing fast TPD of only 15 ns. Over the past few years, we
have also seen the power consumption of MMI PAL devices
decrease by a factor of two (-2) and a factor of four
(-4 parts). Most of these improvements and variations in
speed and power for the 20-pin family have resulted from
changes in our semiconductor process. All of these changes
are certainly noteworthy, however, I think ARCHITECTURE is
the area where MMI has really advanced by leaps and bounds.
In 1984, MMI brought to market the first parts of our
megaPAL family, the PAL64R32 and the PAL32R16 devices.
MMI was flattered to be given the PRODUCT of the YEAR
award (Electronic Products Magizine) for the PAL64R32
logic circuits. I chose it for the heart of this design
exercise. Our megaPAL devices feature several significant
architectural improvements over previous PAL devices most
notably, product term sharing, programmable output polarity,
and register bypass. The PAL64R32 device has 32 input pins,
32 output pins, and 256 product terms to relate the inputs
to outputs. The PAL64R32 logic circuit is four times as
dense as the PAL16R8 device, one of which is also included
in this design exercise, because it will soon be fabricated
in CMOS.

Equally significant to the megaPAL, in terms of architecture,
is another new PAL from MMI, the PAL20RA10 logic circuit
(the RA in the designator stands for Registered Asynchronous).
Each of the 10 identical macrocells of the 20RA10 features a
7474 type D flip-flop which may be asynchronously set or
reset (via a product term). The clock to the macrocell
register is also derived from a product term which is a
somewhat radical departure from traditional PAL architectures.
Other features of the 20RA10 include macrocell register
bypass (this is accomplished by simultaneously asserting
set and reset, which of course is an illegal condition for
a 7474 register), and programable output polarity. The
PAL20RA10 device is an extremely flexible and unstructured
device. It is ideal for interfacing dissimilar signals, or
interfacing to an asynchronous system bus. Needless to say,
I have also chosen to include the PAL20RA10 device in this
design exercise. MegaPAL devices are highly structured logic
elements which make them ideal for synchronous logic. The



PAL20RAIO logic circuits are just the opposite, they are
flexible and most effective in asynchronous environments.
Because most applications have elements of structured and
random logic, I am very enthusiastic about designing with
megaPAL devices and PAL20RAIO logic circuits in tandem.
The "trick", of course, is to partition the system so that
synchronous logic is realized in the highly structured
mega PAL device while the random logic is implemented by
the more flexible RA PAL.

As I am sure you have noticed, computer coupled raster
graphics video systems have abounded in recent years. In
just the consumer electronic sector we have witnessed the
video game, the personal computer, and most recently
digital television. This explosive growth, in part, has been
fueled by the decreasing cost of memory, specifically RAM.
RAM memory is important in modern raster video systems
because it retains the luminance and chrominance information
required by the display monitor to generate an image. This
RAM memory is often refered to as the bit map of the video
raster. A video controller is a device which facilitates a
one-to-one pairing between each bit of the video RAM array
and a specific location (coordinate) on the monitor's
display tube. If you did investigate the Macintosh's video
design, you no doubt realize the power and flexibity of PAL
devices in implementing video controllers. What I propose
we do together at this point, is invent a widget that does
the INVERSE operation of a video controller, specifically a
video digitizer/frame buffer. Video controllers typically
pUll information out of RAM to form an output signal known
as "composite video", our unit accepts composite video as
input and stores that information in a RAM array. We will
call it a FRAME GRABBER because that is exactly what it
does. The host environment for our FRAME GRABBER will be
a personal computer. This environment will provide a debug
monitor during development and allow us to "reconstruct"
our digital image thru the PC graphics mode for display.
The FRAME GRABBER will interface thru the I/O channel of
Ubiquitous IBM-PC compatible computers. Application
support software to simulate "gray scale" will be writen
in a higher level language (turbo Pascal), rather than
Assembly language, in the hopes of being self explanatory.
Before beginning our design exercise, let us review
some video principles and get familiar with the signals
which we will be dealing with. If you have no idea how a
television works, Milt Wilcox wrote a good application note
titled A Color TV Primer for the E.E. which may be found
in National Semiconductor Linear Applications Handbook. It
is worth reading, as is the video section of Donald Finke's
classic Electronic Engineering Handbook.



Suppose we focus a typical consumer video camera (VHS or
Beta format) on a target such as the one depicted in
FIGURE ONE. The output signals of these types of video
cameras were standardized several years ago by the EIA
and formalized in a document known as RS-170A. This type
of video signal is often referred to as "NTSC composite
video" because it contains four distinct signal components
which are merged together (for better or worse if you are
a videophile). These four signals are luminance(brigthness)
chrominance (color), audio (sound), and synchronization.
This type of signal is sufficient to directly drive most
monitors, and is also the basis for television broadcast
as well. The output signal of most video sources (VCRs,
Videodisks,etc.) that are sold in North America are also
composite video, thus making them identical to this video
camera example. That fact is handy to know, because it
insures that our FRAME GRABBER widget will be compatible
with most contemporary video sources (compatibility is a
very important issue and should always be carefully
considered by the designer as early as possible in a
product design cycle).

1~.11 IIII~JII
.-----' i

RS 1 70A VIDEO SIGNAL

''COMPOSITE VIDEO"

Let's investigate the video output signal generated by the
camera aimed at the "gray bar" target depicted in FIGURE
ONE. The camera signal illustrated in FIGURE TWO is for
the "scan" from point A to point B. The important thing
for the reader to notice is that the camera output signal
is proportional to the brightness (luminous intensity) of
the target during the scan fron A to B. This process of
scanning from right to left happens 262.5 times as the
target is traversed from top to bottom. In between each
scan is a time interval known as horizontal retrace (or
H sync). During this time the target scan is blanked as
the raster retraces its path to get into position just
slightly below point A. The scan process then repeats.
The horizontal retrace time interval may be seen in the
camera output signal of FIGURE TWO as the "pulse" which
is labeled SYNC. It takes about 64 ms for a scan and
retrace to occur. A collection of 262.5 consecutive



___ • <AU _ •••• _ •••• -.t" VoL. "'"'u~ ,-a..L.'::I~t..- t..-U cne DO"C1:0m.
At this point, the scan blanks for a rather long time
(the interval is known as vertical retrace and lasts
for a period equal to 20 horizontal scans) as the
raster moves vertically to the top of the target again.
The whole field is then traced out again, however, the
scans of the second field are offset by half a horizontal
line. Two consecutive fields of video are known as a
VIDEO FRAME. It is precisely this amount of information,
a frame, which our widget will digitize and store in RAM,
because this is the minimum information required to
reconstruct an image. The total number of horizontal
scans in one video frame is 262.5 scans/field times 2
fields/frame or 525 scans/frame (NTSC composite video
is often referred to as a 525 line system).
Incidentally, the reason why the two consecutive video
fields are offset by half a horizontal scan is a "trick"
called interlacing and it is helpful in reducing display
tube flicker.

r

,

1
I A B

I
I
I

CAMERA

OUTPUT

SIGNAL ~
SYNC ACTIVE VIDEO s'me TIME

I FIGURE TWO\.

In video systems, even more than in life, timing is critical.
Video is a highly repetitive process and every event in that
process happens in synchronous with a clock. The "clock" for
composite video is usually an integer mUltiple (harmonic)
of the NTSC "color burst" frequency. Color burst frequency
is defined by the EIA to be 3.579545 MHz ( a copy of the
RS-170A signal standard is included as an appendix to this
design exercise). The horizontal scan rate of composite
video approximately 15,750 Hz (one scan period (H) =
63.556 ms). The field rate is 525/2 times the horizontal
scan rate (about 60 Hz) which then makes the frame rate 30 Hz.



On the bus expansion slots of personal computers which
are hardware compatible with the IBM-PC is a signal
called OSC which has a frequency of 14.318 MHz (fourth
harmonic of color burst). Since our FRAME GRABBER widget
will be hosted by a PC, it is natural to use OSC as our
system clock. The flash AID conversion rate was chosen
to be equal to color burst for this exercise. Some quick
calculations on the FRAME GRABBER timing will reveal
the following facts: If 30 Hz is the video frame rate and
14.3 MHz is the system clock, 476190 system clock periods
will elapse in one video frame. Since a nineteen bit
counter is required to count to 476190 , the heart of the
FRAME BUFFER will indeed be a counter of this length. If
the video signal is digitized to two bits of accuracy per
flash conversion and the flash conversion rate is 3.58 MHz
119050 samples or 238100 bits (roughly 32k bytes of RAM)
will be required to retain the information content of a
video frame in memory.

r ::S,:~":43M"'t~~~~~~~~:
I 03 58MHl b r==J r==J ~ ;-,,
II 01 79MHl h

00 90MHl }._, ~~~~~~~~~~~~~~~~~~~_=~~
/FLOE T C

/'w'RITE T r==l'NCADR t ,---,

J
! I

FIGURE THREE

Since the FRAME GRABBER system clock rate is 14.3 MHz and
the AID flash conversion rate is 3.58 MHz four system clock
cycles (280 nsec) elapse between conversions. The memory
organization is 8 bits wide and the AID accuracy is 2 bits
wide therefore 4 sucessive flash conversions will have to
be "packed" into each byte of RAM. Four sucessive flashes
will require 16 system clock cycles (1.12 ms) to complete.
A 4-bit counter obviously increments to 16, therfore it
is natural to segment our requisite 19-bit counter into a
4-bit counter (which will be implemented as the time base
module of the megaPAL design specification) and a
lS-bit counter (address generation module). A lS-bit
counter increments to 32k which is the required memory
address range to store a video frame at our particular



AID conversion rates and resolution. The reader can
crosscheck these rough numbers by remembering that a
memory write occurs every 1.12 ms (16 cycles of the
system clock) and a horizontal scan takes about
64 ms, therfore 58 bytes are required to store a
line of video. There are 525 lines in a video frame, so
the address counter will increment to 30,450 over the
duration of a video frame in we allow it to "free run".
The outputs of the FRAME GRABBER time base module are
illustrated in FIGURE THREE, as well as the write enable
signal, to the static RAMs (/WRITE), the flash AID bus
output enable (/FLOE) and address counter increment
signal (INCADR). This should give some idea of the basic
system timing.

In most video cameras, the RS-170 output signal is usually
AC coupled at the source for isolation purposes. This
situation presents a small problem for the FRAME GRABBER
because the input video signal is "floating", Le., it lacks
DC integrity. In order for an AC-coupled signal to be
digitized, it must be "clamped" (DC restored) before it
can be compared against a series of voltage thresholds.
A traditional circuit to accomplish this technique of
flash AID conversion usually involves a series of linear
comparators and an accurate resistor network to divide
down a precision voltage reference. DC restoration is
generally accomplished by "dumping" one side of a
coupling capacitor with a transistor during the back
porch interval of horizontal retrace. For low-resolution
applications, however, a much simpler PAL-based circuit
can perform the same function.

143 MHZ 00

!CLR 01

0358 MHZ 02

0716 MHZ 03

PAL 16R8 04
05
06

RS-170A VB Rl I R2
~'V'''y--+-''v''v

VIDEO INPUT C
RS

VA '·~+5V

T3
T2
Tl

R3
TO



The FRAME GRABBER video clamp/flash converter circuit is
shown in FIGURE FOUR. Let's investigate how this circuit
operates from an analog point of view. The DC voltage at
node A (VA) is about 2.1 volts if one assumes each of the
three silicon diodes has a forward voltage drop of .7 volt
when driven hard (RS must be on the order of 500 ohms). The
voltage VB will then be 1.4 volts or one diode drop below VA.
If the Thevenin equivalent impedance to ground at node B
was infinite, the most negative part of the AC coupled
video input signal (H sync) would be clamped at 1.4 volts
by the action of the diodes and capacitor. In reality the
circuit is not a perfect clamp because other currents do
indeed enter and leave node B, but it does work reasonably
well if C is large (on the order of 100 microfarads for
our Z Thevenin of 5k ohms). The clamped video signal will
be diminished at the input nodes T2, Tl, and TO by the
ratio dictated by the voltage divider formed by Rl, R2, R3,
and R4. The voltages at nodes T3, T2, Tl, and TO implicitly
are "compared" against the internal threshold (about 1.4
volts) of the PAL device input structure which causes a
logic level discrimination or conversion. This simple
flash A/D converter implemented by a PAL16R8 and a few
passives performs surprisingly well if the PAL digital
noise is mostly cornmon mode with the input (avoid ground
loops at all cost). This scheme may easily be extended
to 3 bits of resolution which requires 8 thresholds to
be encoded, if 1% resistors are used in the ladder. For
higher resolution applications, the design may include
comparators to front end the PAL device. Above 3 bits
of resolution, a bipolar technology imposed limitation
on this A/D technique occurs because the input structure
of a TTL PAL device will both source and sink current
depending on the voltage magnitude at the input. This
leakage current obviously increases with the number of
thresholds and has a cumulative negative effect in the
resistor string. Future CMOS PAL logic circuits will
be ideal for these applications however, because of the
high input impedance of CMOS devices.

The FRAME GRABBER system diagram is illustrated in FIGURE
FIVE. Three PAL devices form the core of the system. The
megaPAL device handles most of the timing, address, and
control logic. The PAL16R8 handles A/D conversion and local
bus interface, while the PAL20RAlO serves to interface the
local bus to the host PC I/O channel bus. To complete the
system four 8k byte static RAMs form the buffer memory and
an octal transceiver (74LS245) provides sufficent drive for
the I/O channel. The FRAME GRABBER has two modes of
operation. When the MODE control bit is high, the unit is
in the capture mode. Video input will continuously be
digitized and stored in RAM. When the MODE bit is low, or
read mode, the PC I/O channel takes over memory control.
The byte of buffer memory pointed to by the address counter
value can be accessed by an I/O reference to location 100 HEX.



28
'5V VCC HM6264 14

2li CS2 8Kx8
STATIC RAM ~

120 27 22 10 9 8 7 6 5 4 3 25 24 21 23 2 11 11 12 13 15 16 17 18 19

'5 V
28

VCC HM62li4 14
2li CS2 8KxB

STATICRAM ~
120 27 22 10 9 8 7 6 5 4 3 2524212321' 11 12 13 15 16 17 18 19

28
'5 V VCC HM62li4 14

2li CS2 8Kx8
STATICRAM ~

120 27 22 10 9 8 7 6 5 4 3 25242123211 11 12 13 15 16 17 18 19

28 HM62li4'5 V VCC
2li CS2 8Kx8 14

STATICRAM
cs1WEOE' AD A1 A2 A3 A4 AS A6 A7 AS A9 A10 All A12NC DO01 02 03 D4 05 D6 07 ~ 'j:O

~2O 2722 10 9 8 7 6 5 4 3 25 24 21 23 211 11 12 13 15 16 17 18 19 .=!.
18 ~ -.
17 L.!!!! -16 ~ -15 ~ -

163 ,11l11 '5V
14 74L$245 ~ -

27 2li 71 69 67 65 64 66 68 70 61 59 57 56 58 60 62 ct- 13 .!.......!Q! ->nW AD A1 A2 A3 A4 AS A6 A7 AS A9A1OA11A12~ 4 12 ~ -a: ~ 0

~!: PWRUP -----!.!. ~ -C2.I
---e E

.!.-
22 OE1~~

OIR

23 CSii GNO

~ CS1 OE2 "* l10 'rCS2 OE3 ..=.
- 24

25 CS3 OE4
.,E...

VCC lL~'5V-...E.. vcc ~ .E.
245EN --,!. 1 17 2 AEN

PL1 INC INC --= -~ PL2 ClRAOR
2 18 ClRAOR ~ -PAl64R32..2!.

Pl3 MODE
3 19 MODE ~ -.2!. PL4 FBRRO
5 15 FiiRiW ~ -

FeiiWE 6 16 FBRWE ~ -
'SV-~ VCC PAL2ORA10 ~ -..E.

PS1 10 DO ~ -..E..
PS2 11 01 ~ -~ PS3 14

02~ PS4 ~ ~1~lilil~li 3
23

03•• M ~IW :.: :.: lll:

~ ~ ~ ~ 5 § ~
o ..I ..J ..J GNO OE0 -' U (J U

GNO GNO . ... ..
~2 .,113t3 J1 121120119117116 141S J:' 187354112

OSC -
11 J -

3 OE 1
PC VOCHANNE

'----'- 0358 ClK CONNECTOR

~ 0714 ClR 2
'5 V~ VCC DO 12

6 TO 01
13

7 T1 02 14
8 03 15

T2
PAl16R8 D4 1"

VIDEO C1 05 17
R1 R2 R3 9

'N~~T ~o '" T3 18
" 06

CR3[

19
R4 07

CR4 GNO

RS CR1 CR2 10
•s V ..

11.

Monolithic W Memories



REVISION
AUTHOR
COMPANY
DATE

A
A.G.GILBERT
MMI SANTA CLARA, CA.
12/17/84

CLK /CLR Q358 Q716 NC T3 T2 Tl TO GND
JOE DO Dl D2 D3 D4 D5 D6 D7 VCC

FLASH A/D MODULE
This design specification module implements a low resolution
Flash A/D converter. Four input thresholds (T3 thru TO) are
synchronously encoded into two bit groupings, then "packed"
four times to form an output byte. This packing operation is
accomplished by two parallel four bit shift registers which
are functionally implemented in this PAL device. One shift register
operates on even bits while the other on odd bits (e.g.
DO - D2 - D4 - D6). These CONVERSION/SHIFT operations occurs
on the rising edge of the 14.3818 MHz system clock when time
base input clocks are in the proper state. Four periods of the
system clock elapse between sucessive Flash conversions for an
effective Flash rate of 3.58 MHz. If the clamped video input signal
has sufficent magnitude to cross the upper three thresholds (white)
the two bit encoding would be 11. If none of the four thresholds
(Hsync) were crossed, the encoding would be 00. The first encoding
in a sequence of four flashes will end up registered in D7 and D6.
The last encoding will be registered in Dl and DO. A monotonically
increasing video signal from Hsync to black to gray to white
would be represented by 00011011 after packing. Get the idea?
One final comment, the PAL16R8 device does not have an output
polarity fuse, therefore, this design specification module
is implemented in negative logic.

:=/CLR*/T3*/T2*/Tl*/TO* Q358* Q716
+/CLR* T3* T2*/Tl*/TO* Q358* Q716
+/CLR*/Q358*/DO
+/CLR*/Q716*/DO
+CLR

:=/CLR*/T3*/T2*/Tl*/TO* Q358* Q716
+/CLR* T3*/T2*/Tl*/TO* Q358* Q716
+/CLR*/Q358*/Dl
+/CLR*/Q716*/Dl
+CLR

:=/CLR* Q358*/D2
+/CLR*/Q716*/D2
+/CLR*/Q358* Q716*/DO
+CLR

;CONVERT
;CONVERT
;HOLD
;HOLD
;CLEAR
;CONVERT
;CONVERT
;HOLD
;HOLD
;CLEAR
;HOLD
;HOLD
;SHIFT
;CLEAR



T/I.:Lrt"'/I,./.j::ltiW VJ.L6*7D1. iSHIFT
+CLR iCLEAR

/D4 :=/CLR* Q358*/D4 iHOLD
+/CLR*/Q716*/D4 iHOLD
+/CLR*/Q358* Q716*/D2 iSHIFT
+CLR iCLEAR

/D5 :=/CLR* Q358*/D5 iHOLD
+/CLR*/Q716*/D5 iHOLD
+/CLR*/Q358* Q716*/D3 iSHIFT
+CLR iCLEAR

/D6 :=/CLR* Q358*/D6 iHOLD
+/CLR*/Q716*/D6 iHOLD
+/CLR*/Q358* Q716*/D4 iSHIFT
+CLR iCLEAR

/D7 :=/CLR* Q358*/D7 iHOLD
+/CLR*/Q716*/D7 iHOLD
+/CLR*/Q358* Q716*/D5 iSHIFT
+CLR iCLEAR

PALASMl SOFTWARE FUNCTION TABLE DESCRIPTION

8 6
i CONTROL INPUTS 5 1 OUTPUTS
i/OE CLK /CLR T3 T2 Tl TO Q3 Q7 D7 D6 D5 D4 D3 D2 Dl DO
;--------------------------------------------------------

L C L X X X X X X L L L L L L L L CLEAR
L C H H H H L H H L L L L L L H H ENCODE WHITE
L C H X X X X L L L L L L L L H H HOLD
L C H X X X X L H L L L L H H H H SHIFT
L C H X X X X H L L L L L H H H H HOLD
L C H H H L L H H L L L L H H H L ENCODE GRAY
L C H X X X X L L L L L L H H H L HOLD
L C H X X X X L H L L H H H L H L SHIFT
L C H X X X X H L L L H H H L H L HOLD
L C H H L L L H H L L H H H L L H ENCODE BLACK
L C H X X X X L L L L H H H L L H HOLD
L C H X X X X L H H H H L L H L H SHIFT
L C H X X X X H L H H H L L H L H HOLD
L C H L L L L H H H H H L L H L L ENCODE HSYNC
L C H X X X X L L H H H L L H L L HOLD
L C H X X X X L H H L L H L L L L SHIFT
L C H X X X X H L H L L H L L L L HOLD
H X X X X X X X X Z Z Z Z Z Z Z Z TRISTATE

i------------------------------------------------------



;
; This "brute force" simulation specification directly
; implements the PALASMI SOFTWARE style function table described above.
TRACE ON T3 T2 Tl TO Q358 Q716 D7 D6 D5 D4 D3 D2 Dl DO
SETF DE CLR iCLEAR
CLOCKF CLK
CHECK /D7 /D6 /D5 /D4 /D3 /D2 /Dl /DO
SETF /CLR T3 T2 Tl /TO Q358 Q716 iENCODE WHITE LEVEL
CLOCKF CLK
SETF /Q358 /Q716 iHOLD
CLOCKF CLK
SETF /Q358 Q716 iSHIFT
CLOCKF CLK
SETF Q358 /Q716 iHOLD
CLOCKF CLK
SETF T3 T2 /Tl /TO Q358 Q716 iENCODE GRAY LEVEL
CLOCKF CLK
SETF /Q358 /Q716 iHOLD
CLOCKF CLK
SETF /Q358 Q716 iSHIFT
CLOCKF CLK
SETF Q358 /Q716 iHOLD
CLOCKF CLK
SETF T3 /T2 /Tl /TO Q358 Q716 iENCODE BLACK LEVEL
CLOCKF CLK
SETF /Q358 /Q716 iHOLD
CLOCKF CLK
SETF /Q358 Q716 iSHIFT
CLOCKF CLK
SETF Q358 /Q716 iHOLD
CLOCKF CLK
SETF /T3 /T2 /Tl /TO Q358 Q716 iENCODE HSYNC LEVEL
CLOCKF CLK
SETF /Q358 /Q716 iHOLD
CLOCKF CLK
SETF /Q358 Q716 iSHIFT
CLOCKF CLK
SETF Q358 /Q716 iHOLD
CLOCKF CLK

SETF JOE iTRISTATE

Monollthlo W Memories



T3T2T1TO
Q358;J716
07D6
05
04
03
02
01DO

1
g cg cg c
XXXXHHHHHHXXXXHHHHliHXXXXHHHHliHXXXXLLLLLLXXXXrlHHLLLXXXXHHHLLLXXXLLllLLLXXXlllllLl
XXXLLlLLllXXXLlllLlL
XXXLLLLLLLXXXllLlLLLXXXLLLHHHrlXXXLlLHHHH

Page

T3
HTO
Q358Q716
0706
D5
04
03
02
01DO

9 cg cg cgHHHHHHH"iHHHHHHH HHHHHHHHHHHLLLLLLlLLLLLLLLLlHHHHHHLHHHllLHHHlLLLlL LLLLLLLLLLLLlLL
LLLLLllLLLlLLLLLLllLLLHHHHHHrlHlLHHHHHHHHHriHHHHHHHHHHHHH HHHlL

1gcgcgcg cg
llLllLLLLL LlLL
H:HHHH teteLlLLLLllll LLllHHHLlLLLlii HHHHHHHLllHHHl LLLLHHliHHHHHHH HHHZHHHHHHHHll LLlZ
HHHrlHHHHlL LlLZLlllLLLLHH HHHZlllLllllll lLLZHHHHHHHHlL LLLZ
LLLLLlLLlL LLLZHHlLlLLLLL LlLZ

cc;; cg cg
HHHHHHHHHHliHHHriHHHlL
LLLLLLLlLLlLLLLLLLLLLLlLLHHHHHLlHli"ilLlHHLLLLLLLlLLlLlLLLlLLLLllLHHHHHliLlLLliHHHHHHHHlililiHHHHHHHliLLLLLLHHHHHHHHHHLllLlllLLL

cg cg cg c
HHHHHHHHHHLllllLlLllLLLLllLLLLLLllLLLLLLHLLLLLLHHHHlllrlHHLLlLLLLllHHHHlLLLLLHrlHHrlrlHHHHHHHHHHHHHHllLLHHHHHI1LLLLLlLLLLHliHHLllLLLLLLlHHHrlHHHHHH

MonollthloWMemorles



REVISION
AUTHOR
COMPANY
DATE

A
ALFIE / KELVIN
MMI, SANTA CLARA, CA
12/20/84

NC AEN /IOW BA9 BA8 BA7 BA6 BA5 BA4 DO D1 GND
JOE D2 /FBRRD /FBRWE INC /CLRADR MODE Q3 /IOR /245EN D3 VCC

This design specification module implements a nibble wide (four bit)
control register for the FRAME GRABBER unit. The outputs of this
module respond to the address, data, and control lines of the host
Personal computer which must be hardware compatible with the IBM PC.
Some of the outputs are combinatorial while others are registered for
obvious reasons. This module is implemented in mixed logic and
demonstrates the superior flexibity of this new PAL device.

CONTROL REGISTER "INC" BIT
OUTPUT IS DERIVED FROM HOST COMPUTER DATA BUS LINE DO
IF AN I/O WRITE OCCURS AT LOCATION 110 THRU 11F HEX

INC
INC.CLKF

:= DO
/AEN*IOW*/BA9*BA8*/BA7*/BA6*/BA5*BA4

CONTROL REGISTER "/CLRADR" BIT
OUTPUT IS DERIVED FROM HOST COMPUTER DATA BUS LINE D1
IF AN I/O WRITE OCCURS AT LOCATION 110 THRU 11F HEX

/CLRADR
/CLRADR.CLKF

:= /D1
/AEN*IOW*/BA9*BA8*/BA7*/BA6*/BA5*BA4

CONTROL REGISTER "MODE" BIT
OUTPUT IS DERIVED FROM HOST COMPUTER DATA BUS LINE D2
IF AN I/O WRITE OCCURS AT LOCATION 110 THRU llF HEX

MODE
MODE.CLKF

:= D2
/AEN*IOW*/BA9*BA8*/BA7*/BA6*/BA5*BA4

; UNUSED CONTROL REGISTER BIT
; ALSO RESPONDS TO AN I/O WRITE TO llX HEX

Q3
Q3.CLKF

:= D3
/AEN*IOW*/BA9*BA8*/BA7*/BA6*/BA5*BA4



~ THIS COMBINATORIAL OUTPUT IS USED TO ENABLE THE BUS BUFFER
~ 74LS245 IF THE HOST REFERENCES I/O LOCATIONS 100 THRU IlF HEX

THIS COMBINATORIAL OUTPUT IS USED TO FILL THE FRAME BUFFER
; RAM LOCATION POINTED TO BY THE ADDRESS GENERATOR WHEN
~ THE HOST COMPUTER WRITES TO I/O LOCATION lOX HEX

THIS COMBINATORIAL OUTPUT IS USED TO READ THE FRAME BUFFER
; RAM LOCATION POINTED TO BY THE ADDRESS GENERATOR WHEN
~ THE HOST COMPUTER READS I/O LOCATION lOX HEX

TRACE ON AEN /IOR /IOW BA9 BA8 BA7 BA6 BA5 BA4 D3 D2 Dl DO
Q3 MODE /CLRADR INC /FBRWE /FBRRD /245EN

SETF OE /AEN /IOR lOW /BA9 BA8 /BA7 /BA6 /BA5 BA4 D3 D2 Dl DO
SETF /IOW /DO
SETF lOW /D2 ;CLOCK CONTROL REG
SETF /IOW /D3 /Dl
SETF lOW D2 DO
SETF OE /AEN /IOR lOW /BA9 BA8 /BA7 /BA6 /BA5 BA4 /D3 /D2 /Dl /DO
SETF /IOR lOW /BA4 ~ASSERT /FBRWE
SETF lOR /IOW /BA4 ~ASSERT /FBRRD
SETF /IOR /IOW /BA9 BA8 /BA7 /BA6 BA5 ;ASSERT /245EN
SETF BA6 /BA5
SETF BA7 /BA6 ;UNASSERT
SETF /BA8 /BA7 ;ACTIVE ADDRESS
SETF BA9 BA8 ~RANGE
SETF AEN /BA9



Title
Pattern
Revision

HOST BUS INTERFACE/ Author
PALHB6.PDS Company

A Date
PAL20RA10
INTERFACE
Page 1

g gg gg g ggggggg
AEN LLLLLLLLLL LLLLLLL

/IOR HHHHHHHHHH HLHHHHH
/IOW LLLHLLHLLL LHHHHHH

BAg LLLLLLLLLL LLLLLLH
BA8 HHHHHHHHHH HHHHHLH
BA7 LLLLLLLLLL LLLLHLL
BA6 LLLLLLLLLL LLLHLLL
BA5 LLLLLLLLLL LLHLLLL
BA4 HHHHHHHHHH LLLLLLL
03 HHHHHHLLLL LLLLLLL
02 HHHHLLLHHL LLLLLLL
01 HHHHHHLLLL LLLLLLL
DO HHHLLLLHHL LLLLLLL
Q3 XHHHHHHHLL LLLLLLL
MODE XHHHLLLHHH HHHHHHH

/CLRADR XLLLLLLLHH HHHHHHH
INC XHHHHLLHHH HHHHHHH

/FBRWE LHHHHHHHHH LHHHHHH
/FBRRD LHHHHHHHHH HLHHHHH
/245EN HLLLLLLLLL LLHHHHH

ALFIE / KELVIN
MMI, SANTA CLARA, CA

12/20/84

Monolithic mMemories



TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

FRAME GRABBER
PALHB5.PDS
B
A G GILBERT
MMI SANTA CLARA CA.
3/7/85

INC /CLRADR MODE /PWRUP /FBRRD /FBRWE NC NC
PLl PSl GND CLKl /OEl Q716MHZ Q358MHZ Q179MHZ Q090MHZ
/FLOE /WRITE INCADR INCDLY /CSO /CSl /CS2 /CS3
/RAMOE /RAMWE NC NC /OE2 CLK2 VCC PS2 PL2
NC NC NC NC NC NC NC NC NC NC NC NC NC NC
NC NC PL3 PS3 GND CLK3 /OE3 All AIO A12 A9
A13 A8 A14 CARRY A4 A3 A5 A2 A6 Al A7 AO /OE4
CLK4 VCC PS4 PL4 NC NC NC NC NC NC NC NC

,
;This design specification module implements a four-bit synchronous
;counter. The outputs of this counter are used internally to generate
;the proper phase of various address or data bus control signals.
;The time base counter is free running (i.e. it does not require a
;count enable signal), however, it may be reset at power up by the
;active-low assertion of the input signal /PWRUP (notice that the
;reset feature does not cost a product term, which is the more general
;case, by matching the input assertion level to desired output level).
;The system oscillator which has a frequency of 14.31818 MHz, is used
;clock the time base module.
Q716MHZ :=/Q716MHZ */PWRUP ;TOGGLE OUTPUT

;OTHERWISE RESET OUTPUT
Q358MHZ := Q7l6MHZ */Q358MHZ */PWRUP ;TOGGLE OUTPUT

+/Q716MHZ * Q358MHZ */PWRUP ;TOGGLE OUTPUT
;OTHERWISE RESET OUTPUT

Q179MHZ := Q716MHZ * Q358MHZ */Q179MHZ */PWRUP ;TOGGLE OUTPUT
+/Q716MHZ * Q179MHZ */PWRUP ;TOGGLE OUTPUT
+ /Q358MHZ * Q179MHZ */PWRUP ;TOGGLE OUTPUT

;OTHERWISE RESET OUTPUT
Q090MHZ := Q716MHZ * Q358MHZ * Q179MHZ */Q090MHZ */PWRUP ;TOGGLE OUTPUT

+/Q716MHZ * Q090MHZ */PWRUP ;TOGGLE OUTPUT
+ /Q358MHZ * Q090MHZ */PWRUP ;TOGGLE OUTPUT
+ /Q179MHZ * Q090MHZ */PWRUP ;TOGGLE OUTPUT

;OTHERWISE RESET OUTPUT
RAM ADDRESS GENERATOR MODULE

,
;This design specification module implements a fifteen bit synchronous
;counter. The outputs of this counter are used to address the RAM



i~~K Dy~eS. ~~nce Lour ~K Dy~e s~a~~c KAMS are usea ~o ~mp~emen~ ~ne
~buffer, outputs A14 and A13 are not directly connected to the memories,
~but rather are inputs to the RAM MEMORY DECODER MODULE.
~A registered look ahead carry bit (CARRY) is employed to couple
~the low and high byte of address. The address counter is enabled by
~the active high assertion of the signal INCADR. The counter may be
~reset to zero by the active low assertion of the input signal /CLRADR.
~This counter is clocked by the same 14.3 MHZ oscillator as the
;time base generator.

:=/AO * INCADR */CLRADR
+ AO */INCADR */CLRADR

;TOGGLE OUTPUT
;HOLD OUTPUT

;OTHERWISE RESET OUTPUT
:= AO */A1 * INCADR */CLRADR
+/AO * A1 * INCADR */CLRADR
+ A1 */INCADR */CLRADR

;TOGGLE
;TOGGLE
;HOLD

;OTHERWISE RESET

*/A2
* A2
* A2

A2

:= AO
+/AO
+
+

:= AO
+/AO
+
+
+

:= AO
+/AO
+
+
+
+

* INCADR */CLRADR
* INCADR */CLRADR
* INCADR */CLRADR
*/INCADR */CLRADR

*/A3
* A3
* A3
* A3

A3

* INCADR */CLRADR ;TOGGLE
* INCADR */CLRADR ;TOGGLE
* INCADR */CLRADR ;TOGGLE
* INCADR */CLRADR ;TOGGLE
*/INCADR */CLRADR ;HOLD

;OTHERWISE RESET

*/A4
* A4
* A4
* A4
* A4

A4

+/AO
+ /A1
+ /A2
+
+
+

* AS
* AS
* AS

/A3 * AS
/A4 * AS

AS

+/AO
+ /A1

* A6
* A6

;TOGGLE
;TOGGLE
;TOGGLE
;HOLD

;OTHERWISE RESET

* INCADR */CLRADR ~TOGGLE
* INCADR */CLRADR ~TOGGLE
* INCADR */CLRADR ~TOGGLE
* INCADR */CLRADR ;TOGGLE
* INCADR */CLRADR ;TOGGLE
*/INCADR */CLRADR ;HOLD

;OTHERWISE RESET

*/AS*
INCADR */CLRADR ~TOGGLE

* INCADR */CLRADR ;TOGGLE
* INCADR */CLRADR ;TOGGLE
* INCADR */CLRADR ~TOGGLE
* INCADR */CLRADR ~TOGGLE
* INCADR */CLRADR ~TOGGLE
*/INCADR */CLRADR ~HOLD

;OTHERWISE RESET

* AS */A6*
INCADR */CLRADR

* INCADR */CLRADR
* INCADR */CLRADR

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

;TOGGLE OUTPUT
;TOGGLE OUTPUT
;TOGGLE OUTPUT



Video Frame Grabber

+ /A2 * A6 * INCADR */CLRADR iTOGGLE OUTPUT
+ /A3 * A6 * INCADR */CLRADR iTOGGLE OUTPUT
+ /M * A6 * INCADR */CLRADR iTOGGLE OUTPUT
+ /A5 * A6 * INCADR */CLRADR iTOGGLE OUTPUT
+ A6 */INCADR */CLRADR iHOLD OUTPUT

iOTHERWISE RESET OUTPUT
A7 := AO * Al * A2 * A3 * A4 * A5 * A6 */A7*

INCADR */CLRADR iTOGGLE OUTPUT
+/AO * A7 * INCADR */CLRADR iTOGGLE OUTPUT
+ /AI * A7 * INCADR */CLRADR iTOGGLE OUTPUT
+ /A2 * A7 * INCADR */CLRADR iTOGGLE OUTPUT
+ /A3 * A7 * INCADR */CLRADR iTOGGLE OUTPUT
+ /M * A7 * INCADR */CLRADR iTOGGLE OUTPUT
+ /A5 * A7 * INCADR */CLRADR iTOGGLE OUTPUT
+ /AG * A7 * INCADR */CLRADR iTOGGLE OUTPUT
+ A7 */INCADR */CLRADR iHOLD OUTPUT

iOTHERWISE RESET OUTPUT
CARRY :=/AO * Al * A2 * A3 * A4 * A5 * A6 * A7 *

INCADR */CLRADR iTOGGLE CARRY ID+ CARRY */INCADR */CLRADR iHOLD CARRY
iOTHERWISE RESET CARRY

A8 :=/A8 * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ A8 */CARRY */CLRADR iHOLD OUTPUT
+ A8 */INCADR */CLRADR iHOLD OUTPUT

A9 := A8 */A9 * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+/A8 * A9 * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ A9 */CARRY */CLRADR iHOLD OUTPUT
+ A9 */INCADR */CLRADR iHOLD OUTPUT

AIO := A8 * A9 */AIO * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+/A8 * AIO * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ /A9 * AIO * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ AIO */CARRY */CLRADR iHOLD OUTPUT
+ AIO */INCADR */CLRADR iHOLD OUTPUT

All := A8 * A9 * AIO */AII *
CARRY * INCADR */CLRADR iTOGGLE OUTPUT

+ /A8 * All * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ /A9 * All * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ /AIO * All * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ All */CARRY */CLRADR iHOLD OUTPUT
+ All */INCADR */CLRADR iHOLD OUTPUT

Al2 := A8 * A9 * AIO * All */AI2 *
CARRY * INCADR */CLRADR iTOGGLE OUTPUT

+ /A8 * Al2 * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ /A9 * Al2 * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ /AIO * Al2 * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ /All * Al2 * CARRY * INCADR */CLRADR iTOGGLE OUTPUT
+ Al2 */CARRY */CLRADR iHOLD OUTPUT
+ Al2 */INCADR */CLRADR iHOLD OUTPUT



Video Frame Grabber

:= AB * A9 * A10 * All * A12 */Al3 *
CARRY * INCADR */CLRADR ;TOGGLE OUTPUT

+ /AB * A13 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ /A9 * A13 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ /A10 * A13 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ /All * A13 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ /A12 * A13 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ A13 */CARRY */CLRADR ;HOLD OUTPUT
+ A13 */INCADR */CLRADR ;HOLD OUTPUT

:= AB * A9 * A10 * All * A12 * A13 */A14 *
CARRY * INCADR */CLRADR ;TOGGLE OUTPUT

+ /AB * A14 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ /A9 * A14 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ /A10 * A14 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ /All * A14 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ /A12 * A14 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ /Al3 * A14 * CARRY * INCADR */CLRADR ;TOGGLE OUTPUT
+ A14 */CARRY */CLRADR ;HOLD OUTPUT
+ A14 */INCADR */CLRADR ;HOLD OUTPUT

RAM MEMORY DECODER MODULE
,
;This design specification module implements a basic combinatorial
;2 To 4 Line Decoder. The outputs (/CSO,/CS1,/CS2,/CS3) are connected
;to the active low chip selects of the four frame buffer static RAMs.
;Since the decoder outputs are active low, it is natural to realize
;this module in negative logic. Notice that the logical sence of
;the following output variables is opposite that of their name in
;the pin list e.g. CSO vs. /cso , this is key to implementing
;negative logic.

=/A14 * A13
A14 */Al3

,
;This module generates several miscelaneous control signals which
;will be described individually. Some of these outputs are registered
;and some are combinatorial.
,
;This signal (/WRITE) is a 70 nsec negative pulse used to write the
;frame buffer RAMs when the unit is in the capture mode of operation.
;This output is derived from the time base generator and it is
;realized in negative logic.



;This equation implements a 2 TO 1 DATA MULTIPLEXER. The output
;signal (/RAMWE) may be thought of as the write enable line for the
;static RAMs. This output is derived indirectly from either the
;time base generator (/WRl ~) or t~~ host personal computer control
;bus (/FBRWE). This allows the PC to fill the FRAME GRABBER by doing
Ian I/O write.
/RAMWE =/WRITE * MODE

+/FBRWE */MODE
iThis equation also implements a 2-TO-l MUX, again controlled by the
imode signal. This signal is used to enable the address counter so it
ican increment (remember that the address counter is clocked by the
i14.3 MHz system clock). The output is derived from the time base
igenerator if the FRAME GRABBER is in the capture mode, or from the
irising edge of the input signal INC if the unit is in the read mode.
iINCADR is positive polarity pUlse with a duration equal to one system
iclock periOd which is 70 nsec.
INCADR :=/Q716MHZ * Q358MHZ * Q179MHZ * Q090MHZ * MODE */PWRUP

+/INCDLY * INC */MODE */PWRUP
iThis bit of logic is used to synchronize the input signal INC with
ithe 14.3 MHZ system clock. Notice that the condition of INCDLY low
iand INC high realizes a synchronous rising edge detector for the
iinput signal INC (refer to the second product in the logic equation
i for INCADR).

iThis design specification module generates signals which enable the
ithree-state outputs of the Flash A/D and the static RAMs. The Flash
ioutput enable (/FLOE) is derived from the time base generator and is
iqualified by the unit being in the capture mode. The memory output
ienable (/RAMOE) is derived from the host computer control bus if
ithe frame buffer is in the read mode.

FLOE :=/Q716MHZ * Q358MHZ * Q179MHZ * Q090MHZ * MODE */PWRUP
+ Q716MHZ */Q358MHZ * Q179MHZ * Q090MHZ * MODE */PWRUP

iThis design specification was assembled on an PC compatible
icomputer using the beta release of PALASM2 SOFTWARE. The simulation
iwas done on a VAX using the alpha release of the simulator. Slight
ivariations in syntax may occur at production release. The
iFRAME GRABBER design has not been optimized in the hopes of
ibeing self explanitory! ...Alfie Gilbert

EJ



TRACE ON CLKI CLK2 CLK3 CLK4
jPWRUP MODE FLOE WRITE INCADR

Q716MHZ Q3S8MHZ Q179MHZ Q090MHZ
AO Al A2 A3 A4 AS A6 A7 A8 A9
AIO All A12

SETF OEI OE2 OE3 OE4
PSI PS2 PS3 PS4
PLI PL2 PL3 PL4

SETF PWRUP MODE
CLOCKF CLKI CLK3 CLK4
SETF jPWRUP
FOR I:=l TO 17 DO

BEGIN
CLOCKF CLKI CLK3 CLK4

END
SETF CLRADR
CLOCKF CLKI CLK3 CLK4
SETF jCLRADR
FOR I:=l TO 32 DO

BEGIN
CLOCKF CLKI CLK3 CLK4

END
SE~F AO Al jA2 jA3 jA4

jAS jA6 jA7 jA8 jA9
JAIO JAIl jA12 jA13 jA14

FOR I:=l TO 187 DO
BEGIN

CLOCKF CLKI CLK3 CLK4
IF I=17 THEN BEGIN SETF A2 END
IF I=17 THEN BEGIN SETF A3 END
IF I=17 THEN BEGIN SETF A4 END
IF I=17 THEN BEGIN SETF AS END
IF I=17 THEN BEGIN SETF A6 END
IF I=17 THEN BEGIN SETF A7 END
IF I=17 THEN BEGIN SETF A8 END
IF I=17 THEN BEGIN SETF A9 END
IF I=17 THEN BEGIN SETF AIO END
IF I=17 THEN BEGIN SETF All END

SETF jA14 jAl3
SETF jA14 A13
SETF A14 jA13
SETF A14 A13

;CLOCK SIGNALS
;CONTROL SIGNALS
;TIME BASE SIGNALS
;ADDRESS SIGNALS

;ENABLE OUTPUTS
;UNASSERT SET
;UNASSERT PRELOAD

;TOGGLE A3
;TOGGLE A4
;TOGGLE AS
;TOGGLE A6
;TOGGLE A7
;TOGGLE A8
;TOGGLE A9
;TOGGLE AIO
;TOGGLE All
;TOGGLE A12



PALH~5'.TRF;'

PAL64R3Z
FRAME ~RAS3Erl
lJi!9" -: 2

H~1
CLO
CLIl ••
PWIl:UP
MCI:lE
FLOE
WRIT:

!~H~~l
(jl58Ml1l
.;179Mlil
i890Mlil
11

"AJ
A4

A'..
A7••A.
110A11
A12

;9 c; c c c c c c c c c c c c c c c ::: :::'"
XXHLL"'LHLIiLr'Lr'LI1LIolLt' LI1i..'1Ll1lHLl-LHLI1Lrll1Ll
UXLLLLLLL LLLLLLLLLl LLLLLLlLLL LlLLLLlLlL
XXl1lU'll1l-f LI'ILi4ll"LI1L" U1Lr1LI1LHLMlHLt"LHLMLL
XXHlLHlHL'1 lHlHll1lHU. It<l'il-lLMLO'f LHLMlr'LHLL
hh1HLllLll llllllllll lllllllLlL llLlLlLlLL
X-lI1HHI1HHrlrlI"I"l-rlO'fI1HI'IHt"HI"M"'rlrll1rlM"••HI1I'1""I1"'I1H
XXXlLlLlLL II LlLLlLLL LLLLLLLLll LLLL"'H'1Hll
XXXlLLLllL LlLLlLLllL LlLLLLLlLl LLll •.•••LLLL
XXXlLllLLL LLLllLLLLl LLLLlLLlll LLLlllHl"lL
XXXI1I1"LLH..• LLl-HlLt4HlL Ml"lLrll"llH1" lL"""LlHl1lL
XXXHHHllll 11"l"!"'LlllH"" •.•HllLl ••••r11"lLllHMHHll
IXXHHI1LLLl LlllHH"'lHHH I1HlLLlLLll "'lHHhHHHHLL
XXtHhHlLlL LLlllllLll ll,P1rlHMI1Ht" HI1HH"'•.•-ll1ll
XXXXXXXXXXxXntlO{XXX XXtXXIIXXX XXXXXXXXXt
XXXXXXXXXXXXXXXnXlX XXXXXXXXAJ.XllXXXXXllX
XXXXXXXXXXxxnxxxxxx XXXXXXXXXlXXXXlXXXlX
llXll"l"XX "XXXXX"XXl XXXl"XlXX" "X"X"XXXXX
XXX"lXXXXXXlUlUXlX X'X"XllX'" "XXXlIXUX
XXXXXXXXXXX"'XXXXXXX XXX"""XXXX Xl"XlXXX"X
XXXXXXXXXlXXXXIHIIX lllXXXlXXlI XXIXXlXX"l
XXXXlXlXXX XlXXXlIXXXXXIXXXXXXXXXXXXXIXXXX
l"XXllXXXl XlXXlll"XXX X"XXXXIXlX XXXlXIXXXI
XlUXXXXXX XXHXlXXXX lXXXX.U),XX XllllXXXXXXX
IXXXXXXllll1 XlXXXUllXX XX"XXllIXlX "lllO.XXJ(1
llXXXIXlXXX XXXIXUXXI XX"XU.XXlI:XXXlXXXXXXl
XXX"XXXXX""xnXUXXl ltlXJXXXXXX XXXXXXX"ltX

CLIt.,
Cu:.2
elO
CLlt.4
PWRUP
MODE
FLOE
WRIH
I NCADrl
C716MHI

pm~!
Q090MHI
AO

:l
A3.4
.5••.7
A8.9A10
A 11
"2

Cli c C c
HLLHLHLHLrI
LLLLLLLLll
HLLHlHlHlH
HlLHLHlHLri
LlLLLllLLl
HHHHHHrl!1Hri
lllLlLllll
lllllllllL
lllLLlLLll
LHHHllHHll
lLLlHHHHll
llLlllLlHH
LlLlllLLll
XHHHHHHHHH
XHHHHHHHHH
X"'HHHHHH!1H
XHrtHHHHHrlO1
XHHI1I1HHHt4H
XrlHHrtHHHHH
XHHHHHHHHH
XriHHHHHHMH
XI"IHt4HHHHt1H
XH"HHHt1rlHH
XHHHHHrlHHH
XHHHHHH"1HH
XHHHHHHHHl"\

c c c c c
lHLHlHlHLH
lllllLlLLL
lHLHU'lt1lH
lHlHlHlHlH
llLllllLll
HHt"HI-'H"1"HH
llLLLLLlll
llLLllllll
LlllllLllL
rtHLLHl1llHI-'
llt"HHHllll
HHt4HHHLlll
lllllLrlH"i1-
H"'I"I1HI-'1I1HI-
HHI"HHI'OHHHI"
HHt-HHI"'HHHI-'
Ht-t-HHI"'HHHH
I1HI-HI1I-HHHt1
HtlI-HH"'HHHI1
HHI-'HH""\o1HHH
Hl1l-HHI-HHHtl
HHI-HHt-,-lHHI-
Hhl-HHI"'HHHI-
HHI"'HI1HHrlHt<
H., tlHH"'liHt1H
HI'"I-HHl-rIHHI-

CCCCC ccccc
lHlHLHLHll-' lHll"'lHlHlH
LlLlllllll LLlLLLlllL
LHlHlHlHll1 lHU'LHlHlH
lHlHlHl~L1"l lHll1lHlHlH
LlLllllLlL llllllllll
HrlHHrl""t-HrlH HI1HHi"II.•HI'P1H
LLLLLlllHH HHlLllllll
LllllLlll1H LLlllllllL
LlLLllLlll HrlLlLLLlll
lLHHllHHll HHlll-IHllHH
HHHHllllHH HHLLlLI-!HHH
lLLLHHHHHH HHLLllllLL
HHH"irlHI1HH"1 '1r1lLLlllll
t1H"HHH" •.•rlH •..•HLllLlLll
HHHHHI"l"HHH HHllllllll
HHHHHHI1HHH HHLllllllL
HHHHHI"lHHHHHHlLllllll
HHrl•.•HHI1HHl-l I-IHlLlLllll
HHHHHHI-HrlH HHLlLLLllL
HHHHHHt'lHHH HHlllllLlL
HHI1HHHHHrlH HHLllLlLLl
I1"'HHHHt"I"HH "'l1llllllll
HI'1HHI'1HI'iHH,..rh1Llllllll
I1HHHHHI1HHHHHLLllllll
HHHHHH""HHI'4"'HLlLlllLL
HHI1HHHI-HHH HMlllLllll

Pl.l64rl32
~:::E:GR~BBcR

C c C c c c C C C C C C C c;c c c c c c
lHlHLrllHlH l""lrll"'lrll" lHLHlHlrllH lHl"lHll1lH
lLllLlllll llLLlLlLLL LllllllLlL lllLLlLlll
lHLHlO1LHlH lHlHlHLHlH lHlHlHlI''IlH lHL""LHlHlH
LHLHlHLl1loi lHlHlHll"'lH lHlHlHlHlH lHLt'l""ll"lH
lllllLLllL llLllllLll lllllLlLll llLLLlllll
HrlrlHHHHHHH H•.•I-HHI'OHHHr'HHHHt-t't-HH"'I HI1'1t,,1H"'H"'I!"l

WHtttH: tttttttttl: ~~j<(ttttl:l:l:l:tttl:l:tl:l:
llllllLlll lllllLLlll llHHLllLLl LlllllllLl
llHHllHHll Hl-llll1HllHH LLHHLLHt"ll "1HlLI1~LLHH
lllLHHHHlL lll-HHHllll I11-'H"'lLlllHH HHLlLlHH~H
rtl1HI-IHHHHLL llllllHMHH HHHHlllllL LlHI1r'HHHHH
lllLLlLLH"'I Ht1I-H"'I-HHHh H01HHLLLLlL lLLLLlLLLl
lLlllLllll lLlllllllL LlllHHI-Hr'H HHH"'H""H"'HH

l:ttttttttt ttttl:tl:tl:t tttttttttt l:l:ttttl:ttt
llLLLlllll lllllLLlll llLLLlllll llllllllll
llllllllll llllLlllll lllllllLlL lllllLllll
LlLLlLllll llLLllllll llllllLLll lLlLlLllll
lLllllLLll llllLlllll lllllLllLl llllllllll
lllLLlllll lLlllllllL LLllllLllL LlLllllllL
lLLLllLlll lllLllllll lllllllllL LllllllllL
lLllllllll llLLllllll lllLllllll lllLlLlLll
llLlllLlll lLLLllllll LLllLlllll llllllllll
llllllllll llllllllll llllllllll llllllllll
LllLlLlLll LlllLlLlll llllllLLLL LLLLlLLLll

CLK'
CU:.2
CLIO
CLK4
PWrlUP
~OOC

mh
INCAOR
~716MHIma~~!
C090HHI
.0
H
.3
A4
.5:~
.8••A10
.11A12

P'AlHB514TIlF;1

lJAL64R32
FRAME Gll:A6~E~
P~ge: 'ccccc

ClKl l'1LHl"'U1L~
C.u.2 llLllllllL

EIJl t~t~tqt~t~
PIIIRUP LllllLllll
,",002 HHHHH•..•HH••H
FLOc lllllLllLL.iun Llllllllll
ItolCAQR lllllllLLl
Q716MHI llHHllHHLl

~H~~~fttttr~~~~~
C090Ht'l1 HHHHH'1HHH01
AO HI'H1HHI111HHH

~l U:ttttHtt
••3 llllLlllll
A4 lLllllllLl
A5 lLlLLlllll
A6 lllllLllll
A7 L.LLlllLlll
A8 lllLLlllll

i~o ttttttHtt
All llllllLLll
A12 llllllllLl

c c c c c
l""llill"'lHlH
llLLllllLl
It'LHLHlHLI1
lHll"ll""LHll1
lLlllLllll
HHt'HH""HHH""
lll"rlO1hllll
lll-HLllllL
llll""Hllll
HHlll-lHlLHH
lL I"HHl"lllll
I1rtl-rlHrtllll
Ht<•.•.I1HHllll
Hr1~HHrtllLl
llllllHHH ••
lllllllLll
llllllllll
lllLLlllLl
llllllllll
llllllllll
lL LllLlLlL
LllLLlllLl
llllllllll
lLllllllll
Llllllllll
lLlllllLll

c<;C c c C
lHLHLHl"'llH
llllllllll
lHlHlt1lHlH
lHLHU'lHLH
LLlLlLllLl
HHHHHt't-'HH'"
lLLlllllll
llllllllll
lllLlLlLLl
llHHLlHHLL
H'1H"'llllHH
llllHI"'HHHH
llLlllllLL
lLlllllLLl
HHHHHHt'I1HH
LlllllllLL
llllllllll
llllllllLl
LLlllllLlL
lllllllLlL
lLLllllLLL
LlLlllllll
lllLLLlLLl
lllLllllll
lllllllllL
LLLlLlllLL

c c c c C
lHll"'LHlHlH
LllllLllll
lHll"'lHlHLI1
LHl~lHlt'lH
llLlllLLll
HH'1t101•.•l1rl'1H
LLllllllll
llllLLLlLL
llllllllll
HHllHHllHH
""HllLLHHHI1
HHLllllllL
llHhH""io1HHH
lllLllLLll
HHHI"'HHHHHH
LllLllLlll
llllllllll
lllLLlllLl
llLllLLlLl
llLLllllll
llLlLllLLl
llLLLllLlL
LlLlllllll
llllllllll
lLlllLlLll
lLLlllllll

CLKl
C LK2
(.LK3
CLK4
;:>WRUP
MODE

m":. NCAOR
C716MHImmf
~090MHI.0
.1
.2
A3
A4
AS
.6
A7••••A10
.11
A 12

PAl64R32
~:~:E:GR~89ER

c c c c C
lrilHlHlHl"'l
lLllllllll
LHlHl""LHlH
lHLHl r1LHlH
llllllLlLL
rlHHHHHHHH"1
llLlt'lHHHll
llLlHHllll
llLlllHHLl
LlHHllrlrlll
llLlHI'lHHll
HHHHriHHl'1lL
HHHHHHHHll
lLlllLllHH
HHHHHH1"lHHH
lLLllLlLll
llllllllll
lLllllllll
llLLllLlLL
lLllLlLlLl
llLLlLlllL
lLLllllllL
LLlLllLLLL
llllllLlLl
lllLllLllL
llLlllLlll

C lK 1
C lK2

au
PWiWP
MODE
FlO!;w~rH
i NCACrl
~716MHI~m~~!
C090~~l
AO

n
Al
A4

'5
A6
'7A6,.
Ale
.11
"2

lJAL6foR 32
FRo\"E_GRAb9ER
°i!!ge: 6

c c ceCil
lHlHlHLHLH
llllLlllll
lHlHlHl"'l""
LHlHl-llHlH
LlllLlllLl
HHHI1r1HMr1HH
lllllLllLL
LlLlllllll
llLlllllll
ll""l1llHHll
llLLrlHHHlL
LllLllLlHH
lLLlllllll
LLlLLlllll
llLLlLLlLl
I1'1HHHHHr1HH
llLlllllll
lllllLllLL
lLlllllLll
llllllllll
LllllLLlll
llLllLllLl
lLllllllll
llllllLlLL
lllllLLLLL
llLllLLlll

PAl64R 32
FRAME GRA85E~
Page 7

c c;c C C
ll1lHlHlHlrl
lLllLlLlll
LHlHlHlHlH
LHLHLHLHlH
llLLllllll
HHHHHHHHHH
llllllllll
llLlllLlll
llLLllllll
llHHllHHLL
llllHHHHLl
HHHHHHHHLL
LllllLlll"lH
HHHHHHHHHH

~~~~~~~~~A
LlllllLlll
llLlllLlll
llLLLLlLll
LLllllllll
lllllllllL
llLlLlllLl
llllllllll
llllllllll
LllllllllL
LlllllLlLl

CLlt.l
C lIC. 2
ClK 3
ClK4
PWRUP
MODE
FlO::
lI'RITE
INCAOR
~716,",HZ

~H~~~i
C090MHI
.0
H
A3
.4
.5
A6
A 7
'8,.
A10
A 11
.12

",AlH851. TrlF;'

PAl64R 32
FRA;>otEGRAaoi:R
Pc ge de C c c c

CLKl lHlHlHlHl""
ClK2 llllllllLL

~t~2 t~t~t~t~t~
PWRUP lLLlllllll
MODE HHHHI'1!"1HHHr1
FLOE Llllllllll
WRITE lllllLLlll
INCAOil lllllllllL
.;)716MHl llHHllHHll

8H$~~i tttt~ttr~A
:1090MHZ HHHHHHHHHH
AO llLllLlLll

:! ~~~~~~~~~~
A3 lllLlllLll
A4 llllllLLll
A5 llllllll II
46 llLlllllll
A7 llLtLlllLl
Aa llllllllll
A9 lLLlllllLL
A10 llllllllLl
•••1 1 llllLlllLl
A1Z lLLLtlLllL

c C c;;c c
LHloilhlHLt'
llllllU.ll
lHLl1lHlHlH
ll'OlHll"lLHll"
lllLLlllll
HHr-H •.••• HHHH

llLLllllll
llLllLLlLl
llLlllllll
HHllHtllLHt-'
lll-H"'Hllll
II LlllHrirtt-
llllLLllll
Ht'l"lriI1Hoi",Hr1
HI"q-HHrHI1H'"
II LlLlllLL
llllLLllLl
llLlLlllll
llLLllllll
lLLLllllll
llllLlllLL
llLllllLll
llllLLllll
LlllLLLlll
LlLlllLlll
llllllLlll

c c C c c
LMlr1L •.•.l •.•lt'
II Llllllll
LtlLHLI'lLl1ll1
LHlHl~lI"lLH
llllLllLll
11"I-'H!"'HHhHto
II LllLLlLl
lllllLllll
lllllLllll
"'''''lLH''llH'''
lll-HH,..llLl
HI"'I""11-'Hllll
llLLll-lH01t'
LllllllllL
llLllLllll
H"""'HI-lHHHrlI-'
lllLLlllll
llLLllllll
LlLllllLLl
llllllllll
llllLlllll
lLLLllllll
llLLllllll
llLllLllll
LlllLlLlll
II LlLLlLll

c c c C C
lHLHlhlHlt"
II LLllllll
lHlHL"'lHlH
lHlHlHlHlH
lllllllLlL
HHt-HHI"HHH""
lllLLLllLl
LlllllllLl
lLLlllllll
HHLll"Il"llHH
ll"HHHllll
lllLllHHHH
H""I--fHH01HHt'
HHt'H"'I"HHHH

~~~~~~~~~~
llLlLllllL
llllllllll
lllllLlllL
llllllllll
llllLlllll
lllllLLLll
lllllllllL
llllllllll
II LLllllLl
lllllLllll

CCCCC
LHLHlI1LHlt'
llllllllll
lHlHlHlHlto
Ll1lHll-'lHlt"
lllLllLLll
Hrll"""Hti,-lHI1H
ll"'HHl1llll
lL t'HlllLll
llllHHllll
HHllrtt4llHH
lll-'MHHLlll
HHHHr4r1llll
HH""HHHllll
lllllU1HHt'
HI1"HHtoHl1tlt-
Hhrrl'1"HH~H
llllllLlll
lllLLlllll
lllllllLLl
lllllllLll
llllllllll
Llllllllll
LL LLllllLl
Llllllllll
lL llllllll
LllLlLlllL

c c c c c
LHlt'l"'lHL""
lLllllllll
lHlHlHLHlH
U'LHlHlril'"
LlllLlllll
HHhHHHI-HHH
llLllllLll
llllllllll
lllLllllll
LlHHllHHll
HHhHLlllHH
HHHHlltlll
LLllrlr1HHH.l1
I1Hrll1HHr1Hr1H
,",~HHHHI1HHH
lllLlLLlll
LLLLLlLLlL
llLllllLLl
lllLllllll
llLLLlllll
llLLLlllll
lllLllllll
llLlllllLl
lllLLLltll
LllLlLLLlL
lllllllllL

c c c c c
lHlHlMLHll1
lllLLlllLL
lHll-Ll-ll1lH
lt1LHll1lhll1
lLlLLlllll
"HH,..I1I1'1I1"'trl
lLllllHH~11
LLllllt4Hll
lllllLllHH
Hl"lllHt'LlHH
HHllllHH01H
LlH"HHtoHHH
HHHtoHHHHrlt'
HHHttHI1,h11'1t'
HHHI-'1HHt'lHH
LLlllLLLLl
lLllllllll
llLLLlLlLl
lllllllLLl
lllllLLLll
lllLLlllll
llllllllll
lllllLlLlL
lllllLLllL
lllLLllLll
lllllLLllL

c c c C c
LHU'lHLHL~
lllllllLLl
lHloilHlHlH
lO1l'1lHlO1l!1
lllllllLll
I-rlHHoil-o•••.•Hri
llllllLU1"1
LlLLllLLri~
llllllLlll
llHHllt1Hll
HoiH"'ILlllHH
llllHHHI1HH
HHhti"''''''''HH'''l
llLllLLlll
lLllllllll
i"lI-lHHHHtoHI1'1
llLllLllll
lllllLLlll
lllllLllll
lllLlllLll
LllLlLllll
llllllllLl
LLllLlllll
lllLLlllll
lllllLlLlL
LllllllLll

c c c c c
lHlHlHll<llrl
lllLllllLL
lHl"lHLHll"l
lHlHL"LhlH
lllllllLLl
1111""" 01to "'IHH •..•

HHlllllLll
lllLllllll
"l"llllLllll
HHll •.•t-llHr'
Ht'llllLI1 ••HI1
HHLLllllll
HHlllLLllL
Ll"'l"'oiHHHHrl
llllllLlLl
HHHhHl1HH"'tH
lllLl:..Llll
LlllLUlll
LllllllllL
llLLllllll
Llllllllll
llllllllll
lllllLllll
lllllllLLl
LllLlLllll
llLlllllll

C C C C C
lHlHlt'lHlH
lllLLLlLll
lHlHlHlHlH
lHlHlHlHlH
llllllllll
noirll'iHHnr1HH
Hr1HHllLLll
HHllllLllL
llHHLLLllL
llHHlll1Hll
HHHHLlLlHH
HHHt1LLllll
HrfHHLllLll
HHHHllllll
llLlHHHHHH
HHHHHHHHHH
lllllllllL
lllllllllL
lllLlLlLLL
lllllllLLl
lllllLLllL
llllllllll
lllllllllL
llllllllll
LllllllLLL
lllllllLLl

c c c c c
LHl"'LHlHL~
lllLLLllll
lHlHLHlt-'lH
lHlHlHlHLH
llllllllll
HHHHHH••HHH
LlLlllLlll
lLllllllll
lllLLlllll
LlHrlllHHLl
HHHHllllHI1
lLllHH""HHH
LllLllllll
HHHHHt'HHH'"

~~~~~~~~~~
LlllLLllll
lllllllLLL
lLlllllllL
LLllllLllL
llllLlllll
lllllllLlL
llllllLLll
LLllllLlLl
llllllllll
llllllllll

c c c C gc
lHll1ll1lHlH
llLllllllL
lHLHlHlHlH
LHlHLHlHlH
llllllllLL
HhHHH••HHHti
lllLlLllll
LlllLllLLl
llLlllllLl
HHlLHHlLHH
HHllllHHHH
llHHHH'1HHH
Llllllllll
llllLllllL
HHHHHHHH'1H
1"lHHnHI"01I1HH
llllLtllLL
lLLlllLlll
lLlLllllll
LlllllLlll
llllLllLlL
llllllllll
LLlllllllL
llllllllll
Llllllllll
lLLlllllll

c gc c c c
LHlhlHlHlH
lllLLlllll
lHl""lHL""lH
lHltolHLt4lH
llllllllll
HHt'Ht'HHHHH
llllllLtlL
llllLllLll
lLlllllllL
tiHllHHllHH
HHlLllHHH""
HHlllUlLl
LLHHHHHHHH
HrlHHHHHH"''''
Hrllo1t'Io1t'HHH'"
H10111HHHHl"ll1rl
Llllllllll
lllllLLLLL
lllLLllllL
LLllLlLLLL
lllllllllL
llllllLllL

~~tttttttl:
lLlllllllL
llLlLllllL

Monolithic W Memories

El

C lll.1
C lK2
CU]
(lK4
pW~UP
MODE
FlO:
will Tc
INC~DR
,716MrlZ~m~~li8~OMtH
H
A3
A4A'A6A7
A8A9
A 10
A 11
A 12

,
C C C C c
ll1ll-llr'lr'lrl
llllllllll
lrllHlrll~l'1
lHlHlHI.Hlrt
llllllllLl
I-tHHHH'1Hr1HH
llllH"iH-+ll
LlllHHllll
lLllLlrlrlll
lLHHLU".llL
LlLlt'HHHlL
HI-lHHHHH-+lL
HHHt<HHH~Ll
HHHHHHt1t1LL
HHrtHHHrlrlLl
HHHHHHHHlL
llLlLlLlH"l
llLllllLll
LLLLlllLLl
LLlLLLLLLL
llLlLlllLL
LLllllLLLL
lLLLllLlLL
lLLLLllllL
lLLllLLLLL
lLLLllllll

c c C C C
Lt'LHlt'Ll1l1'1
LlllLlllll
ltol LHLl"'lrlLr'
LtollHlHLHlH
LLLLlllLLL
t'H I-HHI-I-+I"'HH
LlLLllllll
lllllllLll
LLLllllLLl
HHlL!-lt'L UH'
lll-t'll1hllll
lL llLLHHrito
LLlllllllL
lLLLLLLlll
LLLllllLLL
LlLllLLLll
Ht'I-H"'fHHHHrl
llLLLLLLLl
lllLLllLLL
lLLLllLLLL
llLLLllLLl
llLLllLlll
llLLlLLlLl
lLllllLllL
LlLLlllLlL
lLllLLLLLl

c c c';jc C
lHlrtU"lI1L"
llLlLLllll
LHLHll1lHLI-I
lHLHLHL~LI-I
LLLlLLLLLl
HHHtolHl"'l-wHH
llLLLLllLL
LlLlLLLlLL
lLLllLllll
lLt4HlLI-HLL
HrtH"'LLLLHw
HHrlHllLlLL
LlLLHHhHHH
LLlLllLlLL
llllllLLLL
LllLllLlll
HrlH"'HHI'1HI-<H
LlllLLLLLL
lLLlLlllLl
llLllllLLl
lLLLllLLll
llLlllLLLL
llLllLLLll
lLlLLLLllL
lllllLLllL
lLlLllllLL

CU.1
elK2au
P WRU?
MOuE
FLOE
\o,RrTE
INCAilQ
Q716Mt't~

8m~~f
:1090"HZ40
H
AJ••A'A6
47
.8.,
A10All
A 12

:)Al64R]Z
:=R A,..,i: Gil:AiiSEil
Pl'';jli! :- 10

C C C C C C C C ;: cc; c c c c c
LrllHLHLHLH ll"'l'"lU"lHlt- l,",lHlt'l"'lt<
LLlLllllll LlllllllLl llllLlLLLl
lHlHLHLHlH Lt'LHLt-lHL'" LHLrilHltolLI"!
l'iL'"'L"'lHl'"l Lt-lt1L1"'LHU' LHl~LHLt"L"
lLLlLLlllL lLLlllllLl LLllllLlll
J1rlHHHt"MrlI"tHHI"I-,",HI-HrlHH I"tHHHM""t-HHH
LLllLLlLll llLlllLLLL llLlLlllrlrl
llLLLLllll lLlllllLll llLLllLlHH
lLllLlllll LlLllLllll llLlllllll
LlrlHllrlrlll H"'LlHMtLHH LLHrlLLt"rlLl
lllLHHI1HlL Llt'Hi"'HLlLl. HI-lHHlLlLt1i"l
lllllLLlHH "iHHrlHHllLl LLLlrHlt"'"lHi"l
LllLLLLLLL llLllll-lHHt1 hi"l",r1HI1t'lH,U,
l1!1rlHrlrltH1rtH Hht-:"lHh~"1"l~ HI1HHH"lHrlr1H

tttttl:tHr ttttttttl:t tl:tttl:tttt
HHrlHHl"'tolHrlH1"'1'"I"HH/"lHHHI'"Ht"HHHHI1t'tHH
LLlllllllL lllLlllllL LLLlllLlll
llLLlLLLll lLll.LlLlll LlLlllllll
LlLLllllLl LLlLLlLlLl lllllllLlL
llLLlLllLl lllltLlLlL LLllLlllll
lLlllllLlL LLllLllLLl llLLlLlLll
LLlLllllLL llLLLlllLl lLlllllllL
LlLLLLLlLL llllLlLlLl lllllllLll
LllllLlLLL LlllLLLllL lllLlLlLll
lllllLllLL lllllLLlLl llllllllLl

c c c c C
L!1lHlrll'"lLM
lLllllLlll
Lrll,",lHLHLH
lHl"lHlHlrl
lllllLllll
Hr1H"'Hl'1HHrlH
Llllltl-'HloiH
llllll"lHll
lllLlLllHH
HHlLI1Hlll11"l
i'lHLllL-4HIiH
lUH.,/"i.,rlH'"lH
lolHlolroll"llolr'rl"lH
llLlllllll
llllllllll
llLLlllllL
I"IHrll1'1HHHrol,",
lLlllllLLl
lllllLllLl
lLLll LlllL
LLlllLLLLL
lLLLlLLLLL
lLLLllllLL
lLllllllLL
lLl.llllLLl
lLlllLlLLL

-NOlo"!: u"'o\o~;co(

;lo!'l;lli! :- 11 c c c c c

elK1 l"'LJollr'L>1l'"
Cl,;2 lLLLllllll

Et~, t~t~t~t~t~
PWRU~ lllllLllll
MODE Hi"ltolHH"iHHH'1
FlO: llllllLLLl
"'RITE lllLllLLLL
IN(AJR lLlllLlLll
"716KHZ lLriHLlHHllsn~=~f~~~~~~~~tt
CO~OHHI lllllLLltH1
AO lllLLlllll~~ r~r~trr~c~
A3 Ht'tHHriHrlHHrl
A4 lllLLlllll
A5 LlLlLllLll
Ao llLllLlLlL
A7 llllLlllll
Ab lllLLLlLLL
A9 llllllllLl
.10 LllllllllL
'11 lllllllLll
A12 lllllllLlL

c c;c c c
l"lHlHl rlL,.
Llll.llLLll
lI1Lt1lt-LHlH
It'tll''ill-LHll'''
lllllllLLl
HI1I"'H'1HI1H,",H
llllllLlll
LlllLlLLLl
llllllLLlL
'1HllHHll"iH
II l""t1rlLllL
llllllHHI1H
HI"'I-'"lHrlHHHI"l
lLLLllllll
HHt-I'lHH"HH~
llllllLLLl
HHMrlHHHH,",,",
llllllLlll
LlLLLlLllL
lllLLlllll
L.llllLllL
lllLlllLLl
LL lLlLllLl
lllllLlllL
LllllLlLll
lllLLLllLL

c c c c C
l,",lHlt-LHLI1
lL lLLlllLL
LHLHl"'lHl'"
lHlrllHlHll-
lllllLLlLL
Ht'I-HI-I1l-lHH"
LL I-~I-Hllll
lll-Hllllll
lllLtolHllLL
r'HllHHLLHh
Llt-t1I"1HllLl
HHI--+Ht-lllL
HhhrlrlHllll
HI"'~HIof"'llll
HH"I1Hr1LLLl
lLllLl~HHrI
tolHr'1111!1HHHH
LlLLLlllll
lllllLLlll
LLLLLlLLll
LlLlllllll
LllLLllLll
L llll LllL l
lllLlLLlLl
llllllLlll
LlLllLLlll

c c c c C
lr'lr'lHHlr'
LLll.lLLllL
lHLHlMl"lLH
LHLI'lL!'1Lt4lH
llllLLll.ll
HHH"lHHHr'Hw
H~H"llllllL
t1'"'lLllLlll
llHHlLlllL
llHHlLt''"lll
HrlHi"lllllr1H
HHHHllllll
I1Hl'lrLlllll
LlLLHHKHHH
I"HHr1rl~I'l"lHr1
lLlllllLLL
rlHH"irlHI'H1rlH
LLllLlllLL
LLlLlLlllL
LLLLlllllL
llLlllLLll
LLlllLlLlL
lLlLllllll
lllllllllL
llllLLlllL
llLlLllLll

c c c c ::
ltllt-ll'OLHlH
LLlllLllll
lHLHll"ILHlH
lHll-lHlHlH
llllllllLL
Hr1'"1'"lHt'Hl"i"'~
LLlLLlllLL
LlLllllLLl
LLLlLlLlLl
H""llHI"'lll-1H
'"lloflllLI1H"l'"l
llt'I-'"IHI-lI1HI1
llllllLlll
I-lHHHHHHH-+H
HHHI1l"lHI1Hr1r4,
llllLlllll
HH,",HHhr'HI'lr1
llLllLllll
LllLLlllll
LLlllLLLLl
LlllllLLll
llLlllllLL
LlLLLLlLLl
lLLlllLlll
LLLllLlLLl
llllllllll

c c c c c
LHl'"lll1llolLH
llllLllLlL
lHLr1L""l'"lll"l
l'"llHLl"Ilrlll'"
lllllLllLl
HI-lhHrlHt''ir1H
LllllLllll
lLLlllllll
llLLlLLLLL
LLrlHLU,Hll
Hl1l"lrllLllHrl
lLllHHt'I'lHH
LLLlLLllll
LlllLllllL
llllllllll
MHHHHHI-HHh
HHHHHHI-tHHH
LLLllLLLll
lllllLllll
lllllLllLl
llLllllLlL
LLlLlllLLL
llLLlllLll
llLlllllll
lllllLlLll
LlllLlLllL

c c c c ::
l'"llHlhLrllM
LLlLlllLLl
LHlr'L,",Ll1lH
lHll"ll"lHLH
lLLlllllll
-P·IHI"IHtol'1H,-lH
lLllLlLlll
lllLlLlLlL
lLllllllll
H'"lLlHHLl'1H
HHllllHHHI1
'1HllllLlLl
ll'"lMi"lt1HIofHI"I
llllLllLLl
llLlLLLLlL
HHHI"lIolI1r'MHM
HHHhr1hHHHr1
llLllllLll
LLLlLlLllL
llLlllLLLl
llllLlllLl
LlLlllllll
llllllLlLl
lLlLLLllll
llLlllllll
llLLllLLll

cccee
LHll-oLl1lHLH
lLLLLLLlLl
lHlHlHLHLI1
LMLMlHLHlH
lllLLllLll
1-4HHt-4J1HHt'tr'
HI"ILLLLllLl
LlLLLlllll
Hl1lllLLllL
HHlLHHLl~11
HHlLl LHr1I1r1
HHlllllLLl
'"lhllLLllLl
-4l1lLlllLll
LLHHl1hHH'"l1"l
lLLllllllL
HHHHHt1HHHH
lLlLllllll
LlLlLllLLl
llLlllLLll
Llllllllll
LLllLLllll
LllllLlLll
LLllLlLlLL
lllLllllLl
lllllllLll

PAlo4R32
F~AME G:U3'H:R:
P~ge 12

c c c c;c
lHll"llrlLI"LH
LLLllLllLL
lHlHlHLHlH
Lt'tLHlHLHU1
LlLLlLLlll
Hr1rll-'HHr1I1HH
llLLlLLlLl
llllllllll
lLLllllLLl
lLHHl Lt1HlL
lLllHHt'tt111
lllllllLHH
HHHHHt'tHHHH
HI1HHHHHtolH'1
HHH'"'t'tH•.•Ht'H
LllllllllL
HHrlHHHHHM"'f
lLlLllllll
llLLLlLlll
llLLllLLLl
lllllLLllL
llllLllLlL
LlLLlllLll
lLllllllll
LllllllLlL
llllllLlll

CU.1
CU.2m?
P WRUP
MOO::
F lOi:
.UT::
1 NC AO R
,,716HH1

g1m~f
.;o090HHZ
'0
B
AJ
A44'A.
A7A8
A9
AlOAll
A12

Monolithic mMemories

FOOD FOR THOUGHT
The FRAME GRABBER which we just synthesized in our design
exersise is actually half of a video Frame Buffer unit.
Video frame buffers have become quite popular in recent
years. The key p-lements of a video frame buffer are
illustrated in FIGURE SIX. The concept behind a frame
buffer is sim~~~ . A frame buffer stores the incoming
video information in a RAM array for future use,and the
digitized image has been stored in a memory array, it is
often processed by digital signal processing techniques.
These techniques may be hardware or software based. Digital
signal processing implemented in hardware tend to be very
fast (even real time), but expensive, while software signal
processing algorithms are slower, but more cost effective
in most applications. The most basic type of digital signal
processing usually performed on video is image enhancement.
Video signals which have been corrupted by noise are likely
candidates for image enhancement. In many types of
applications image enhancement is often followed by a more
complex type of signal processing, known as pattern
recognition. This type of signal processing is usually
a software algorithm which does not execute in real time
and for that reason digital image frames must be buffered
in memory.

l, F_1G_U_R_E_S_I_X_~J

The popularity of Video Frame Buffers has been both
application and technology driven. The ever decreasing
cost-per-bit of RAM has made the system designer the
size of memory arrays required to store video images
of acceptable resolution and gray scale content affordable
ASIC technology such as the megaPAL device which
we just investigated, has streamlined the address,
control, and timebase logic of video frame buffers as
well. These technological advances have made many
applications economically feasible. In the industrial
sector these applications include robot control, collision

avoidance, quality control, quality assurance, incoming
inspection, surveillance/security systems, and a host
of others. If you are starting to get excited about the
prospect of innovating something on your own, you are
probably pondering what the future will be like. I think
we will see vision applications abound in personal computer
environments. The combination of an optical imager coupled
to a personal computer is the silicon parity of a very
familiar organic computer, namely, our eyes and brain. It is
only a matter of time until personal computers can read and
recognize for us. So my advice to designers is simple :
Imagineer before you Engineer! When you get to the point
of implementing your ideas, think about PAL devices, they
are remarkable axels for the wheels of your mind. I hope
you enjoyed reading this design exercise as much as I
enjoyed creating it.

Please feel free to send
comments or sugestions to
A. G. Gilbert
MMI 09-26
2175 Mission College Blvd.
Santa Clara, Ca. 95054-1592

z
I

"'...... I1ll..AOlt.£VEt.-'r:=::....:...=...: I
.--'---Il.A/«lHGLEYEL I
.~----·~--i

~--j 'it :8 "(
~21lfV

Il(ftM:NCt:lUICNIAlE"
~E.CCiLOR~ODl:.

='~~~JmJC·/,v\~§;=
~-~~----."""

"C'U7,B'

NOTES
1 SPECIFICATIONS APPLY TO STUDIO FACILITIES. COMMON CARRIER, STUDIO

TO TRANSMITTER AND TRANSMITTER CHARACTEAISTICS ARE NOT INCLUDED

2 ALL TOLERANCES AND LIMITS SHOWN IN THIS DRAWING PERMISSIBLE ONLY
FDA LONG TIME VAAIATIONS,

3. THE BURST FAEQUENCY SHALL BE 3519545 MHz.tl0 Hz. .

• THE HORIZONTAL SCANNING FREQUENCY SHALL BE 2/455 TIMES THE BURST
FREQUENCY [ONE SCAN PEAIOD (H) • 63 556 "see)

5 THE vERTICAL SCANNING FREOUENCY SHALL BE 2/525 TIMES THE
HORIZONTAL SCANNING FAEOUENCY [ONE SCAN PERIOD (V) • 16.683 "SEe)

6 STAAT OF COLOR FIELDS I AND III IS OEFINED BY A WHOLE LINE BETWEEN THE
FIRST eOUALlZJNG PULse AND THE PRECEDING H SYNC PULSE START OF
COLOR FIELDS II AND IV IS DEFINED BY A HALF LINE BETWEEN THE FIRST
EQUALIZING PULSE AND THE PRECEDING H SYNC PULSE, COLOR FIELD I
THAT FIELD WITH POSITIVE GOING ZERO-CROSSINGS OF REFERENCE
SUBCARRIER MOST NEARLY COINCIDENT WITH THE SQlIt AMPLITUDe POINT OF
THE LEADING EDGES OF EVEN NUMBERED HORIZONTAL SYNC PULSES.
REFERENCE SUBCARRIER IS A CONTINUOUS SIGNAL WITH THE SAME
INSTANTANEOUS PHASE AS BURST

7. THE ZERO-CROSSINGS OF REFERENCE SUBCARAIER SHALL BE NOMINALLY
COINCIDENT WITH THE 5O'llI POINT OF THE LEADING EDGES OF ALL
HORIZONTAL SYNC PULSES, FOR THOSE CASES WHERE THE RELATIONSHIP
BETWEEN SYNC AND SUBCARAIER IS CRITICAL FOR PROGRAM INTEGRATION,
THE TOLERANCE ON THIS COINCIDENCE IS .140- OF REFERENCE SUBCARRIER

8 ALL RISE TIMES AND FALL TIMES UNLESS OTHERWISE SPECIFIED ARE TO BE
0.14 "SEC .10.02 "SEC MEASURED FROM 1()'\\, TO 90"4 AMPLITUDE POINTS. ALL
PULSE WIDTHS ARE MEASURED AT 5O'llI AMPLITUDE POINTS, UNLESS
OTHERWISE SPECIFIED

9, TOLERANCE ON SYNC LEVEL, REFERENCE BLACK LEVEL (SET -UP) AND PEAK
TO PEAK BURST AMPLITUDE SHALL BE.12 IRE UNITS

10 THE INTERVAL BEGINNING WITH LINE 17 AND EXTENDING THROUGH LINE 20
OF EACH FIELD MAY BE USED FOR TEST, CUE AND CONTROL SIGNALS.

11 EXTRANEOUS SYNCHRONOUS SIGNALS DURING BLANKING INTERVALS,
INCLUDING RESIDUAL SUBCARRIEA, SHALL NOT EXCEED 1 IRE UNIT
EXTRANEOUS NON-SYNCHRONOUS SIGNALS DURING BLANKING INTERVALS
SHALL NOT EXCEED 0 51RE UNIT. ALL SPECIAL PURPOSE SIGNALS (VITS. VIA,
erc) WHEN ADDED TO THE VERTICAL BLANKING INTERVAL ARE EXCEPTED
OVERSHOOT ON ALL PULSES DURING SYNC AND BLANKING, VERTICAL AND
HORIZONTAL, SHALL NOT EXCEED 2 IRE UNITS

12. BURST ENVELOPE RISE TIME IS 0.3 "SEC ·0,2 "SEC -0 I "SEC MEASURED
BETWEEN THE 1()'\\, AND 90% AMPLITUDE POINTS BURST IS NOT PRESENT
DURING THE NINE LINE VERTICAL INTERVAL

13. THE START OF BURST IS DEFINED BY THE ZERO-CROSSING (POSITIVE OR
NEGATIVE SLOPE) THAT PRECEDES THE FIRST HALF CYCLE OF SUBCARRIER
THAT IS 5O'llI OR GREATER OF THE BURST AMPLITUDE ITS POSITION IS
NOMINALLY 19 CYCLES OF SUBCARRIER FROM THE 5O'llI AMPLITUDE POINT OF
LEADING EDGE OF SYNC. (SEE DETAIL ZZ).

14 THE END OF BURST IS DEFINED BY THE ZERO-CROSSING (POSITIVE OR
NEGATIVE SLOPE) THAT FOLLOWS THE LAST HALF CYCLE OF SUBCAARIER
THAT IS 5O'llI OR GREATER OF THE BURST AMPLITUDE

15. MONOCHROME SIGNALS SHALL BE IN ACCORDANCE WITH THIS DRAWING
EXCEPT THAT BURST IS OMITTED, AND FIELDS III AND IV ARE IDENTICAL TO
FIELDS I AND II RESPECTIVELY.

16. OCCASIONALLY, MEASUREMENT OF PICTURE BLANKING AT 20 IRE UNITS IS
NOT POSSIBLE BECAUSE OF SCENE CONTENT AS VERIFIED ON A PICTURE
MONITOR.

COLOR TELEVISION SToolO

PlCTlJIE LINE AMPLIFIER OUTPUT

RS 110 A
E IA TENTATIVE STANDARD

Type
L = Array [0.•239] of Integer;
Fash = Array [0.•3] of Integer; (* Define Fash as a 4

(*flash encodings
VAR

X1,X2,Y1,Y2,
X,Y,W,
AB,C,H,I,J,K,M,N,P,Num,
Hsync,NO,
remain,
P1,P2,
Byte,
color
Ch
Line
Q
even, odd

INTEGER;
Char;
L;
Fash;
Boolean;

Procedure Check; (* Check to start the program *)
Begin

Writeln('Do you want to display a picture or snap one?'};
Write('Continue D/5'};
Repeat

Read (kbd, ch)
Until (ch='D') OR (ch='5') OR (ch='d') OR (ch='s');

End;

Procedure
Var

PI,PJ
A
Flash

(* If's' capture a new frame *)
(* before begining *)
(* If 'd' display last frame *)
(* Upper & Lower characters *)
(* are both accepted *)

Binary(X:Integer; Var Q:Fash} ;
Integer;
Array[0 .•7] of Integer;
Integer;

Begin
PJ :=0;
For PI := 7 Downto 0 Do

Begin
A[PI] := X Mod 2;
X := X Div 2;

End;

(* Convert each value read *)
(* into an 8 bit binary *)
(* equivalent *)

For Flash := 0 to 3 Do
Begin

PI := Flash;
If (A[PJ]=O)
If (A[PJ]=O)
If (A[PJ]=1)
If (A[PJ]=1)
PJ := PJ+2;

End;

AND (A[PJ+1]=O) Then Q[PI]:=O;
AND (A[PJ+1]=1) Then Q[PI]:=1;
AND (A[PJ+1]=O) Then Q[PI]:=2;
AND (A[PJ+1]=1) Then Q[PI]:=3;

(*Unpack each byte by

Begin
Check:
GraphMode:
Palette(l) :
color := 1:
C := 0:
I := 0:
J := 1:
N := 0:
Hsync := 0:
NO :=0:
AB := 0:
If (ch='S') OR (ch='s') Then

Begin
Port[272] := 4:
Port[272] := 6:
For I := 1 To 11000 Do

AB := AB+1;
End;

While (C<>20) AND (NO<>22000)
Begin

Port [272] := 2;
Port [272] := 3;
X := Port[256];
NO := NO+1;
If x=o Then C := C+1
Else C := 0;

End;

(* converting the a-bit *)
(* value into 4 flash values*)

(* Run the check procedure *)
(* Graphics mode *)
(* Use black color graphics *)
(* Set counter to zero *)
(* Set all initial condition*)

(* If snapping a new picture *)
(* delay about 1/30 sec *)
(* to be able to capture the *)
(* video frame after reseting*) EJ(* the address counter and *)
(* setting the mode bit for *)
(* "CAPTURE" mode *)

(* Reset address counter *)

Do
(* Reset the mode bit for *)
(* "READ" mode and increment *)
(* the address counter *)

If (NO=20000) AND (C<>20) Then
Write(IYou need to adjust your light!!I);

For I := 1 To 2000 Do
Begin

Port [272] := 2;
Port [272] := 3;
X := Port[256]:

End:
For Y := 0 To 199 Do

Begin
P :=0;
Hsync := 0;
W := 255:
Xl := 0;
H := 0;
Even := False;
Odd := False:
remain := Y Mod 2:

(* Disgard the 1st 2000 bytes*)
(* read from the port *)

(* Start the main program
(* Display 200 lines of
(* horizontal flashes
(* Set the initial flashes
(* to all '11'

Case remain Of
0: Even := True:
1: Odd := True:

End:
While H<>l Do

Begin
Port [272] := 2:
Port [272] := 3:
X := Port[256]:
If x=o Then

Begin
Binary(w,Q) :
For I := 0 To 3 Do

Line[I] := Q[I]:
Binary(w,Q) :
For I := 0 To 3 Do

Line[I+4] := Q[I]:
H := 1:

End
Else

W := X:
End;

For I := 1 To 55 Do
Begin

Port [272] := 2;
Port [272] := 3;
X := Port[256];
Binary(x,Q) ;
For J := 0 To 3 Do

Begin
K := K+l;
Line[K] := Q[J]:

End;
End;

While Hsync<>12 Do
Begin

If Line[P]=O Then
Hsync := Hsync+l

Else
Hsync := 0;

P := P+l:
End:

Pl := P+29;
P2 := Pl+160;

For I := Pl To P2 Do
Begin

Yl : = Y;

(* Look for the 1st byte of *)
(* all O's. X is new value *)
(* read from the port and W *)
(* is te previous value. If *)
(* x=o then assign W as the *)
(* first byte of the line *)
(* and X as the second byte *)

(* Else assign X to previous *)
(* value W *)

(* At this point the first *)
(* two bytes of horizontal *)
(* line are stored. Read the *)
(* next 55 bytes *)

(* Look for the first *)
(* horizontal sync. Count 12 *)
(* bytes of zeros *)

(* Disgard the next 29 bytes *)
(* Display the next 160 bytes*)
(* of data *)
(* Display the flashes on *)
(* line Y *)

Monolithic W MenJorles

Y2 := Y;
X2 := Xl+2;
If Line[I]=2 Then

Begin
If even Then (*Place -x for even lines

Plot((Xl+l),Yl,color)
Else

Plot(Xl,Yl,color); (*Place X- for odd lines
End;

If Line[I]=3 Then Draw(Xl,Yl,X2,Y2,color);
Xl := Xl+2;

End;
End;

gotoxy(1,25) ;
Write('Press ESC to stop.');
Read (Kbd, Ch);
If Ch=#27 Then
TextMode;
End.

1
2
3

.. .. 4

5
6
7

e
9

10

PAL® Device Introduction

PAUHAL® Device Specifications

PAL Device Applications

PALASM® Software Syntax

PLE™Circuit Introduction

PLE Circuit Specifications

PLE Circuit Applications

Article Reprints

Representatives/Distributors

Logic Tutorial 4-1
Table of Contents for Section 4 4-2
1.0 Boolean Algebra

1.1 The Language of Logic ...•... 4-3
1.2 AND. OR and NOT 4-3
1.3 Precedence ..•.......... 4-3
1.4 Associativity and Commutativity 4-4
1.5 Postulates and Theorems•................ 4-4

1.5.1 Duality 4-4
1.5.2 Using Truth TAbles•............. 4-4
1.5.3 Complement of a Boolean Function 4-4

1.6 Algebra Simplification•..•.......... 4-5
1.6.1 SOF and POS 4-5
1.6.2 Canon ical Forms 4-5
1.6.3 Conversion Between Canonical Forms•............. 4-6

Binary Systems
2.1 Base Conversion .

2.1.1 Base2to Base 10 Conversion .
2.1.2 Base 10 to Base 2 Conversion .
2 1.3 Base 2 to Base 8 .

2.2 Simplicity of Binary Arithmetic•........•......
2.2.1 1's Complement•....•.....•.••.•..........
2.2.2 Subtraction with 1's Complement•.........
2.2.3 2's Complement .
2.2.4 Subtraction with 2's Complement ...•..•..........................

Karnaugh Map
3.1 Karnaugh Map Technique .

3.1.1 Karnaugh Map Reading Procedure•.......................
3.1.2 Karnaugh Map Matrix Labels•..•..•..•..•...........
3.1.3 Karnaugh Map Examples•....................

Combinational Logic
4.1 Introduction ..•.............
4.2 Combinational Logic•..•.............•........•.......
4.3 NAND and NOR gates•..•......................•.......
4.4 Multiplexers•..•.............•..•.....•..•....
4.5 Decoders•..•.............•........•.......
4.6 Magnitude Comparator•..•..•..•................•..........
4.7 Adder•..•.....•..•.............•..•..........
4.8 Hazard•..•.............•..•..•..........

Sequential Logic
5.1 Introduction•..•.................•...................•.......
5.2 Latches•.................................

5.2.1 RS Latch .
5.2.2 D Latch•....................................
5.2.3 JK Latch•..•................•.............
5.2.4 T Latch ...•.............

5.3 Flip-Flops .
5.3.1 Characteristic Equations .

5.4 Designing Sequential Logic .
5.4.1 Transition Tables•..........................
5.4.2 State Tables and State Diagrams•..•..•................•....
5.4.3 Design Examples .

5.5 Counters•....................................

4-10
4-10
4-11
4-12
4-13
4-15
4-15
4-18

4-20
4-20
4-20
4-21
4-22
4-22
4-22
4-22
4-23
4-23
4-23
4-24
4-28

1.1 The Language of Logic
Although you may not be aware of it, you are already an expert at
forming, simplifying and comprehending Boolean equations
and expressions. Boolean algebra, in its most common applica-
tion, is concerned with the truth or falsity of statements; and any
time you describe what circumstances would make something
true or false, you have made a Boolean equation.

For example, suppose A is true only if Band C are true. These
three letters may represent anything you like - A may be
whether or not you may become president, B may be whether or
not you are elected, and C may be whether or not you are a
citizen of the U.S.A. You may become president only if you are
elected and you are a citizen of the United States. If we wrote that
statement in equation form, it might look like this:

A = B'C

where the * is a shorthand notation for the word 'and.' A, Band C
are all Boolean variables, since they represent some value which
may be either true or false. You either are a citizen of the United
States, or you are not - there is no in between. Examining the
relationship between these three variables, we find that:

1) if you are elected and you are citizen then you may become
president;

2) if you are elected but you are not a citizen then you cannot
become president;

3) if you are not elected, but you are a citizen, you still can't
become president, and;

4) if you are neither elected nor a citizen, then you definately
cannot become president.

This same relationship, which may be expressed in terms of an
English sentence of a Boolean expression may also be repres-
ented by a table of all the possibilities, called a truth table. If we
let '1' stand for true, and '0' stand for false, we can make the
following table:

B C A

0 0 0

0 1 0

1 0 0

1 1 1

The table above is a standard way of expressing logical relation-
ships. Our truth table lists the possibilities one-by-one. If Band
C are false, then A will be false, If B is true and C is false, then A
will still be false. If B is false, and C is true then A will still be false.
However, if Band C are both true, then A will be true.

1.2 AND, OR and NOT
The fact is that every time you have an equation of the form:

A= B'C

you will have a truth table of the torm in section 1.2 because the
table and the word 'and' are just two ways of expressing the
same relationship between two Boolean variables.

true. This equation could be written:

A = B+C

Do not confuse the '+' with the addition sign of arithmetic; in
Boolean algebra, it is shorthand notation for the word 'or'. A truth
table for this equation would be:

B C A

0 0 0

0 1 1

1 0 1

1 1 1

This table expresses a different relationship between the varia-
bles than AND does; AND requires that both of its operands be
true for the expression to be true. OR only requires that one of its
operands be true for the expression to be true. From the table
above, we can see that:

1) if both Band C are false, then A is false:

2) if B is false, and C is true, then A is true:

3) if B is true and C is false, then A is true and:

4) if both Band C are true, then A is true.

Finally, let's look at the operator 'not'. If A equals not B, then the
value of A is the inverse of B. This equation would be:

A = /B

Again, the '/' should not be mistaken for the division sign of
arithmetic. It is a shorthand notation for the Boolean operator,
'not'. The truth table for this equation would be:

EEffiA

o 1

1 0

which is to say that:

1) if B is false, then A is true and:

2) if B is true then A is false.

In arithmetic, the mUltiplication sign is always evaluated before
the addition sign. For example:

3+4x7
is 31, not 49. Similarly, the AND sign is always evaluated before
the OR sign. Another way to say this is that AND has a higher
precedence than OR.

Of course, in arithmetic, the precedence of operators may be
changed with parentheses. If you wish the expression:

3+4x7
to be evaluated as 49, then you should write it as:

(3+4)x7
The parentheses enclose a subexpression that should be evalu-
ated before the expression as a whole can be evaluated.

Of the three Boolean operators we have seen so far, NOT has the
highest precedence, then AND, then OR.

1.4 Associativity and Commutativity
Both the ANO and OR operators have the property of associativ-
ity (in fact, all Boolean operators have this property, except for
NOT). The property of associativity says that in an expression
with more than one operator of the same kind, it does not matter
which you evaluate first. In terms of equations, this would be:

B'(C'O) = (B'C)"O

B+(C+O) = (B+C)+O

All Boolean operators (except for NOT) are also commutative.
This means that the order in which the operands appear is not
important. In equations, that would be

B"C = coB

In 1854, the mathematician and philosopher George Boole pub-
lished his book, 'An Investigation of The Laws of Thought', in
which he demonstrated how classical logic could be defined with
algebraic terminology and operations. Then, in 1938, C. E.
Shannon published his paper "A Symbolic Analysis of Relay and
Switching Circuits", which demonstrated a Boolean algebra of
two values called "switching algebra", which could be used to
representthe properties of bistable electric switching circuits. A
minimal set of formal postulates is needed in order to define this
Boolean algebra. Here we will define Boolean algebra to be an
algebra defined over the set B, where B = (False, True) and over
the operators ANO ("), OR (+) and NOT (I), such that:

1) All operators are closed (which means that it is impossible to
create a Boolean expression that has a value other than True
or False),

2) Postulates 1 through 4 in Table 1-6 are true, and

3) NOT is an operator which, when applied to a Boolean varia-
ble, x, creates its complement such that, if x = True then
Ix = False, and if x = False then Ix = True.

Given this basic set of rules, it is possible to derive any of the
theorems in Table 1-6, For example:

Theorem 1a) x+x = x

x+x = (x+x) = True
= (x+x)(x+/x)
= x+(x"/x)
= x+False
=x

by Postulate 1b
by Postulate 2a
by Postulate 4b
by Postulate 2b
by Postulate 1a

1.5.1 Duality
One of the most important properties of Boolean algebra is the
duality principle. This principle states that any algebraic expres-
sion that may be deduced from the postulates of Boolean alge-
bra has a dual which is also true. The dual of an expression is
obtained by replacing all Trues with Falses, all Falses with Trues,
all ANOs with ORs, and all ORs with ANOs. For example:

Theorem 2a x+True = True

has the dual:

which is also theorem 2b. All postulates and theorems listed in
Table 1-6 are listed as pairs of duals. Of course, any of these
theorems could also be derived without using the duality prin-
ciple. For example:

Theorem 2b x"False = False

x"False = False+(x+False)
= (x"/x)+(x+False)
= x"(lx+False)
= x"/x
= False

by Postulate 1a
by Postulate 2b
by Postulate 4a
by Postulate 1a
by Postulate 2b

1.5.2 Using Truth Tables
Finally, theorems may be demonstrated with truth tables. A
theorem always holds true if it holds tr~e for all cases; and since
two variables can only have two values each, there are only four
possible cases, so it is reasonable to look at a theorem on a case-
by-case basis. For example, we can prove Theorem 5a with the
following truth table:

x Y I(x+y) (/x"/y)

F F I T T

F T F F

T F F F

T T F F

It can be seen from Table 1-7 that, in every case, I(x+y) is equal to
(/x"/y).

1.5.3 Complement of a Boolean Function
A Boolean expression is some m ixtu re of Boolean variables and
operators that has a value. For example:

x+y"z"/a

is a Boolean expression. A Boolean function is a statement in
which two expressions are equated. For example:

a = b"c
I(c"d) = Ic+/d

are Boolean functions. (The difference is the presence of an
equal sign. It is worth noting that equals, orequivalence is also a
Boolean function because two expressions are either equal or
they aren't. However, in this book we will attemptto present only
true equations, so the Boolean values of an equals sign may be
ignored in functions.)

So far, we have talked about a Boolean expression's value as
True or False. More frequently, these values are written as 1 and
0, with 1 standing for True, and 0 standing for False. From now
on, we will also adopt this standard.

The complement of an expression may be written easily by
placing the NOT operator in front of the enclosed expression:

l(x+y"z"/a)

but it is also possible to complement a function. The comple-
ment of a function is obtained by complementing both sides of
an equation. For example, given the equation:

la = b"c+1

the complement would be:

r(/a) = l(b·c+1)

which could be simplified:

a = l(b·c+1) by Theorem 3
a = l(b·cr/1 by Theorem 5a
a = l{b·crO def. of complement
a = a by Theorem 2b

Note the differences between obtaining the complement of a
function, and obtaining the dual of a function. The complement
is obtained by complementing the entire expression on both
sides of the equation, and manipulating it from there with the
given postulates and theorems. The dual of a function is
obtained by replacing all1's with a's, all a's with 1's, all AN Ds with
ORs, and all ORs with ANDs.

In fact, the easiest way in which to obtain the complement of a
function is by taking the dual of the function and complementing
each individual variable (called a literal). For example, the com-
plementof:

can be found by

1) taking the dual:

Dual: F = (x·/y)+[w+(x·z)] and,

2) complementing each literal:

Complementing: IF = (/x·y)+[/w+(/x·/z)]

1.6 Algebraic Simplification
A literal is a complemented (Ix) or uncomplemented (x) variable.
A term is a subexpression, often enclosed in parentheses. The
equation:

F = {x+/yr/x

has three literals and two terms. Simplifying a Boolean equation
is an attempt to minimize the number of literals orthe number of
terms in an equation. Unfortunately, in many situations, one can
only be minimized at the expense of the other, so it is important
to decide from the outset whether you are minimizing iiterals or
terms. Literals can be minimized by repeated applications of the
postulates and theorems of Boolean algebra (Table 1-6), but
there is no algorithm; it is a trial and error process. For example,
the equation:

F = (x·/z) + [(x+y)*/z]

may be simplified through the following steps:

F = (x·/z)+[(x+Vr/z]
= (lz·x)+[/z·(x+V)]
= Iz·[x+(x+y)]
= Iz·[(x+x)+y]
= Iz·(x+y)

Postulate 3b
Postulate 4a
Theorem 4a
Theorem 1a

The equation is now simplified because there are no postulates
or theorems, which, when applied, will serve to further reduce
the number of literals.

1.6.1 Sum of Products and Product of Sums
When an equation is in the form:

F = (a·b)+(c·/a)+e

for example, it is said to be in sum 01 products form. This is
because the equation is composed of a number of product terms
(ANDs) that are summed (ORed) together. The sUbexpression
result of two operands ANDed together is referred to as a pro-
duct because of the resemblance of the AND operator to the
multiplication operator of arithmetic; the result of OR is referred
to as a sum because of the resemblance of the OR operator to
the addition operator of arithmetic.

When an equation is in the form:

F = (a+b)·(a+/b)

for example, it is said to be in product of sums form, because it is
composed of a number of sum terms (OR) that are ANDed
together. Both sum of products and product of sums forms are
called standard form.

1.6.2 Canonical Forms
If an equation has three variables that are complemented or
uncomplemented, then there are a limited number of ways in
which these variables can be ANDed or ORed together. Refer-
ring to Table 1-9, under the column 'Minterms', and the subco-
lumn 'Terms', there are seven different ways in which three
variables could be ANDed together. Each combination has
been given a name - the letter 'm' and a number. For example,
the expression:

(x·y·/z) is m7'

Using these shorthand notations for expressions, we can refer to
the equation:

F = (lx·y· Iz)+{x· Iy· Iz)+{x· Iy·z)

as:

F = m2+m4+m5

which is much more compact. When an equation is expressed in
terms of these named AND sUbexpressions, or minterms it is
said to be in sum of minterms form.

Similarly, there are seven ways in which three variables may be
ORed together, each variable being primed or unprimed. A
named OR sUbexpression is called a maxterm. The equation:

F = (x+y+zr(x+/y+/zr(lx+/y+/z)

could also be written as:

F = mO·m3·m7

since each OR subexpression has been given a name consisting
of an 'M' and a number. (See the column 'Maxterms' in Table
1-9.) An equation expressed in this way is said to be written in
product of maxterms form. Both sum of minterms and product
of maxterms forms are called canonical forms.

In many equations, not every variable is represented in every
term, but it is still possible to write them in canonical form. A little
algebraic manipulation will produce the missing terms that are
needed. For example, the equation:

F = (x·y·z)+(lx·y)

is missing a 'z' in its second term. In orderto write this equation in
sum of minterms form, we must first take the following steps:

F = (x'y'z)+(lx'y'1) Postulate 1b
= (x'y'z)+[/x'y'(z+/z)] Postulate 2a
= (x'y'z)+(lx'y'z)+(lx'y'/z) Postulate 4a

= m7+m3+m2

To create a missing variable in a maxterm, use the duals of the
postulates used above. To create more than one missing varia-
ble, expand the equation as many times as is needed by follow-
ing the steps above.

1.6.3 Conversion Between Canonical Forms
Canonical forms do not only exist because they are more
compact; using canonical forms, it is possible to write any equa-
tion expressed in sum of products in terms of product of sums.

Given the equation:

F = (la'b'/c)+(a'/b'c)+(a'b'c)
= m2+m5+m7

we can take its complement by forming an equation from all the
minterms that are NOT present in the equation:

IF = mO+m1+m3+m4+m6
= (la' Ib' Ic)+(la' Ib'c)+(la'b'c)+(a' Ib' Ic)+(a'b' Ic)

Finally, using the dual/complement method, we can take the
complement again. Of course, by Theorem 3 (Table 1-9), any-
thing that is complemented twice returns to its original value:

F = (a+b+c)'(a+b+/c)*(a+/b+/c)'(la+b+c)'(la+b+/c)

We have now expressed function F, originally in sum of pro-
ducts, in product of sums form. Any Boolean equation can be
written in either form.

An even quicker way of doing this conversion is to write a
product of maxterms equations using the maxterm numbers
which did not appear in the original equation. For example, in
our equation F, written in sum of minterms form, we used the
numbers 2, 5 and 7. In our product of maxterms form, we would
use the maxterms 0, 1, 3, 4 and 6.

F = mo+m1+m3+m4+m6
= (a+b+c)' (a+b+/c)' (a+/b+/c)' (la+b+c)' (la+/b+c)

This works because each maxterm is the dual of the minterm
that has the same number.

Of course, any equation written in the canonical forms can likely
be simplified: so after converting from standard form to canoni-
cal form, then converting from one canonical form to another,
you may wish to simplify your equation.

;=D-F

a. AND
F = x'v;=D--F

c. NAND
F = l(x'V)

X~F

f. BUFFER
F::: x

I (a) x+False = x
Postulate 1

I (b) x' True = x

Postulate 2 I (a) x+/x = True
(b) x'/x = False

Postulate 3
(a) x+y = y+x
(b) x'y = y'x

Postulate 4
(a) x'(y+z) = (x'y)+(x'z)
(b) x+(y'z) = (x+Y)'(X+l)

Theorem 1
(a) x+x = x
(b)xx=x

Theorem 2
(a) XT True = True
(b) x'False = False

Theorem 3 I(x) = x

Theorem 4
(a) x+(Y'z) = (x+y)+z
(b) x'(y'z) = (x'y)'z

Theorem 5 I (a) I(x+y) = IX'/y
(b) I(x 'y) = Ix+/y

Theorem 6
(a) x+(x'y) = x
(b) x'(x+y) = x

XV F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Fl1 F12 F13 F14 F15 F16
o 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

o 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

* X V :+: + IV IX

;=D-F

b. OR
F :::x+y;=D-F

d, NOR
F = I(x+v)

x-----t>o-- F

g. NOT (INVERTER)
F = IX

2.0 Binary Systems
Bmary numbers utilize a base 2 number system that can only be
In one of two logical states: a "O"ora "1". This number system is
used in current digital computer systems because the outputs of
most switching circuits can only be in one of the two logical
states. Also, when transistor circuits are operating in one of two
modes only, greater reliability can be obtained.

Normally, decimal (base 10) numbers are written using a posi-
tional notation. In other words, the value of the number is deter-
mined by multiplying each digit to an appropriate power of 10
which is dependent on its relative position to the decimal point.

Example 2.1

714.02 = 7xl02+1x101+4xl00+0xlO-1+2x10-2

2.1.1 Base 2 to Base 10 Conversion

Similarly, binary (base 2) numbers are also position-dependent
relative to the binary point; each binary digit is multiplied by an
appropriate power of 2 in order to obtain the decimal equivalent.
The following example shows the conversion from a base 2
number to a base 10 number.

Example 2.2

101.Q12 = 1x22+0x21+1x20+0x2-1+1x2-2
= 4+0+1+0+1/4
= 5.2510

Notice that the binary point separates the positive and the nega-
tive powers of 2. This is similar to the case of the decimal point
separating the positive and negative powers of 10.

-2.1.2 Base 10 to Base 2 Conversion

Converting a base 10 integerto a base 2 integer requires utilizing
the division method. To explain, let N represent the base 10
integer. Divide this integer, N, by 2 since base 2 is desired. As a
result, there should be a quotient, QO' and a remainder, RO' Then
divide the previous quotient, QO' by 2 again and continue this
process until the final quotient equals zero. The desired binary
digits are the remainders reSUlting from each division step; the
least significant bit starts with RO'

Example 2.3

Converts 6110 to binary:

61/2 = 30 remainder = 1 LSS
30/2 = 15 remainder = 0
15/2 = 7 remainder = 1

7/2 = 3 remainder = 1
3/2 = 1 remainder = 1
1/2 = 0 remainder = 1 MSS

6110 = 1111012

Converting decimal fractions to binary requires successive mul-
tiplications by 2. Let F be a decimal fraction. Multiply this
number F by 2 and obtain an integer and a fraction result. Take
this integer and multiply once again by 2. Continue this process
until it terminates or until a sufficient number of digits has been
reached. The desired digits are the integer parts that were
obtained at each multiplication step. The most significant digit is
obtained first.

Example 2.4

Convert 0.37510 to binary

0.375 0.750

~ ~
0.750 1.500

0.500

~
1.000

0.37510 = 0.011

Note that if this procedure doesn't terminate, then the result
must be a repeating fraction.

2.1.3 Base 2 to Base 8

To convert binary to octal (base 8) or vice versa is very simple
and can be done by inspection. Each octal digit corresponds to
three binary digits since it can be in one of eight states (0 to 7).
Therefore, the binary number should be divided into groups of
three starting from the binary point. Each group on both sides of
the binary point is replaced by an octal digit representation.

Example 2.5

101110.0112 = 101 110 . 011
= 56.38

Similarly, binary to hexadecimal (base 16) and vice versa can
also be done easily. This time, instead of three, the binary
number is broken up into groups of four. The reason is because
a hexadecimal digit can assume one of sixteen states (0 to 9, A,
S, C, E and F). Again starting from the binary point, each group
is replaced by its hexadecimal equivalent.

Example 2.6

11100101.00112 = 1110 0101 . 0011
E 5 3 16

2.2 Simplicity of Binary Arithmetic
Due to the design of logic networks, it is much easier to do
binary than decimal arithmetic in digital systems. Although
binary arithmetic is implemented in about the same manner, the
addition tables are much easier. Fortunately, numerical subtrac-
tions may be performed by addition operations between numbers.
This property is of little use in the decimal system. However,
much can be gained if used in the binary system. This is mainly
due to the fact that in a binary system, complements of numbers
are easily implemented, and the same hardware can be used for
addition and subtraction operations. This allows for considera-
ble savings in terms of system hardware design.

2.2.1 l's Complement

To find the 1's complement of a binary number is easily done by
inverting each digit (0 or 1) up to the most significant digit
specified.

Example 2.7

The l's complement of:

01011.1101 = 10100.0010

MonolithIc mMemorIes

To subtract two positive binary numbers X and Y, (X-Y), the
following procedures should be used:

1. Take the 1's complement of Y and add it to X.
2. Check results for overflow carry:

a. If there is an overflow carry, add it to the least significant
digit of the result.

b. If there is no overflow carry, the result is negative. Then,
complement this result and place a minus sign in front.

Example 2.8

a) 1010.11 - 1000.01 = ?

1010.11
+ 0111.10 - 1's complement of 1000.01

overflow 1 0010.01
+ 1 - add overflow carry

0010.10 - answer

b) 1001.10 - 1100.11 = ?

1001.10
+ 0011.00 - 1's complement of 1100.11

no overflow 1100.10 - -0011.01

Since there is no overflow carry, take the 1's complement of
1100.10 and add a negative sign in front of it:
Answer is -0011.01

2.2.3 2'. Complement
The most widely used numbering manipulation technique in
current digital computers is the 2's complement method. This
method is easily implemented with any decent computer
instruction set. Using the same hardware for addition and sub-
traction in 2's complement makes system design simpler and
can lead to savings in cost.

To find the 2's complement of a binary number requires the
following:
1. Take the logical complement by inverting each digit of the

binary number.
2. Add 1 to the least significant digit.

The 2's complement of 001100.01 is:

step (1) 110011.10 - logical complement of 001100.01
step (2) + 1

110011.11 - answer

This technique can also be done by visual inspection. Start with
the least significant digit of the number and visually scan to the
left. Leave all digits unchanged until the first "1" is encountered.
Then invert all the remaining digits to the left. Note that the
binary point has no effect on this procedure.

2.2.4 Subtraction with 2'5 Complement
The steps for subtracting two binary numbers X and Y, (X-Y), are
as follows:

1. Add X to the 2's complement of Y.
2. Check result for overflOW carry:

a. If there is an overflOW carry, then throw it out. The result
now represents (X-Y).

b. If there is no overflow carry, the number is negative. Take
the 2's complement of the result and place a negative sign
in front of it.

Example 2.10

a) 1110.11 - 1011.10 =?

1110.11
overflow carry + 0100.10 - 2's complement of 1011.10

throw out 1 0011.01 - +0011.01

b) 0001.11 - 1000.10 = ?

0001.11
no overflow + 0111.10 - 2's complement of 1000.10

carry 1001.01 - -0110.11

Since there is no overflow, this number is negative. Therefore,
take the 2's complement of 1001.01 and add a minus sign in
front: Answer is -0110.11

3.1 Kamaugh Map Technique
There exists a technique that allows the logic designer to
minimize Sum of Product terms by utilizing Karnaugh maps.
The Karnaugh map (referred to as K-map) graphically displays
the implicants (minterm) in any Sum of Product expression. It is
derived directly from the truth table of this expression. K-maps
are very useful for minimizing three, four, five and even six
variable functions, but it gets too complicated beyond six. For
expressions with more than six variables, the numerical manipu-
lation should be done on a computer that uses the Quine-
McCluskey method. This technique will not be discussed in this
book.

3.1.1 K-Map Reading Procedure

Each minterm cell in the K-map has a value of "1" as determined
by the truth table. Circle those single minterm cells that will
combine with its adjacent cells to form larger groups of 1, 2, 4, 8,
etc. If each single minterm cell is grouped individually, the map
reading process should yield the original Sum of Product
expression.

However, if two minterm cells are grouped together, at least one
variable is dropped. This is because the theorem X'Y+X'/y = X
has been executed once. If a group of four adjacent minterm
cells have been combined, then the theorem has been executed
tWice and two variables are dropped. Thus, a group of eight
adjacent cells result in three variables being dropped. Therefore,
the main objective is to minimize the number of minterm cell
groupings while maximizing the number of minterm cells in
each grouping. By minimizing the number of cell groupings, the
number of inputs to the OR function is reduced. On the other
hand, by maximizing the number of cells in each grouping, the
number of inputs to the AND function is reduced.

3.1.2 K-Map Matrix Labels

In labeling the K-map matrix, the following
followed.

Top to bottom or left to right:

Two-variable Three-variable
00 000
01 001
11 011
10 010

110
111
101
100

Four-variable
Add a '0' MSB and use the
three-variable chart for the first
half. For the second half, add a
'1' MSB and repeat the same
chart in reverse order.

Notice that the number of variables shown above is referring to
one axis only (X or V). However, this technique may be used for
any number of variables that may be desired on each axis. For
any axis greater than one variable, the second-half is a mirror
Image of the first-half with the MSB equal to a '1'. This can be
seen above when comparing the three-variable list to the two-
variable list.

3.1.3 K-Map Examples
Examples of Ihree- and four-variables K-maps are shown below.
The corresponding truth tables forthe examples are also shown
to illustrate the derivation of the K-maps.

Example 3.1

Three-Variables K-map:

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Truth Table

Example 3.2

Four-Variables K-map:

A B C 0 F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0

B,C
A 00 01 11 10

o 0 13 11

product term 1 = B'/C
product term 2 = IB'C
product term 3 = IA'C
(SOP form)

F = B*/C+/B*C+/A*C

~ 00 01 11 101

00 21 1 1 1

01 1 1 0 0

11 1 1 0 0

10 ..!- ~ 0 13

product term 1 = Ie
product term 2 = IA'/B
product term 3 = IB'C'/D
(SOP form)
F = IC+(IA'/B)+(/B'C'/D)

4.0 Combinational Logic

4.1 Logic Design Introduction
Logic design is a combination of analysis, synthesis, minimiza-
tion and implementation of Boolean functions. Boolean func-
tions must originally come from worded statements. This is a
very important part of logic design because the worded state-
ment can be ambiguous and imprecise, while the Boolean equa-
tion must be unambiguous and exact. The conversion of words
to equations is called synthesis. Engineers must be careful when
synthesizing a problem because many times the originator of a
problem is not a technical person. It is the responsibility of the
logic designer to review the synthesis of the problem with the
originator to make sure the solution is suitable.

4.2 Combinational Design
Combinational logic is a network whose output is solely
dependent upon its inputs. It has no feedback loops or memory
elements.

The first step in combinational design is to analyze the problem
and then define it in an exact manner. This will make synthesiz-
ing a Boolean equation much easier.

Synthesis usually takes several steps. Using truth tables and
K-mapsare common ways of specifying a problem and putting it
in the minimal Boolean form.

Example 4.1

A seven-segment decoder decodes a BCD number and turns on
the appropriate segments of a seven-segment digit. Given the
seven-segment digit in Figure 4-1 develop a minimal equation
for each segment by using a truth table and K-maps.

Forming a truth table from Figure 4-1 is done by writing all '10'
possible inputs down, then determining which segments should
be activated for each input. Forexample, segment 'a' is activated
whenever; 2, 3, 5, 7, 8, 9 or 0 is input to the decoder. Once the
table is formed, a K-map can be made for each segment. The
K-maps are used to derive a Sum of Products logic equation for
each segment.

K-maps are an excellent way offorming equations when three to
six variables are involved in a problem. Two standard algebraic
forms of the function can be derived - the standard Sum of
Products - (minterm expansion) and the standard Product of
Sums (maxterm expansion). A network of AND and OR gates is
derived directly from either form.

INPUTS OUTPUTS
DECIMAL

W X Y Z a b c d e f 9

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 0 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 0 0 1 1

W,x 00 01 11 10

00 J.., 0 1 1

01 0 1 1 0

11 X X X X

10 1 1 X X

~ 00 01 11 10

00 1 1 1 1

01 1 0 1 0

11 X X X X

10 1 1 X x t

Y,Z

W,x 00 01 11 10

00 1 1 1 0

01 1 1 1 1

11 X X X X

10 1 1 X X

Y,Z

W,x 00 01 11 10

00 ,!.; 0 1 1

01 0 1 0 1

11 X X X X

10 1 0 X X

c'= IY+X+Z

01 11 10

0

0

x x x

x X

e = /X·/Z+Y·/Z

Y,Z

W,X 00 01 11 10

00 1 0 0 0

01 1 1 0
1.,-

11 X X X ~
10 1 1 x xl

Y,Z
W, x 00 01 11 10

00 0

ROW A B C MINTERMS MAXTERMS

0 0 0 0 IA'/S'/C = mO A+S+C = MO

1 0 0 1 IA'/S'C = m1 A+S+/C = M1

2 0 1 0 IA'S'/C = m2 A+/S+C = M2

3 0 1 1 INS'C = m3 A+/S+/C = M3

4 1 0 0 A'/S'/C = m4 IA+S+C = M4

5 1 0 1 N/S'C = m5 IA+S+/C = M5

6 1 1 0 A'W/C = m6 IA+/S+C = M6

7 1 1 1 NS'C = m7 IA+/S+/C = M7

t:ach maxterm is a sum of variables. It is derived by solving a
"-Inap for the O-terms instead of the I-terms. Maxterms are used
III a Product of Sums solution.

Example 4.3

rlework the first two K-maps from Example 4.1 to get a maxterm
solution.

Table 4-1. Minterm and Maxterm Expansions

Each minterm is a product term, so a Sum of Products expres-
Sion may be written with minterms.

Example 4.2

rlewrite the Sum of Products equations from example 4.1 in
Inlnterm form.

a = ~m (0.2.3,5,7,8,9,10,11.12,13,15)
b = ~m (0, 1,2,3,4,7,8,9,10,11,12,15)
c = ~m (0, 1,3,4,5,6,7,8,9,11,12,13,14,15)
d = ~m (0, 2, 3, 5, 6, 8,10,11,13)
e = ~m (0, 2, 6, 8,10,14)
f = ~m (0,4,5,6,8,9,10,11,12,13,14,15)
g = ~m (2,3,4,5,6,8,9,10,11,12,13,14,15)

Y,Z Y,Z
W,X 00 01 11 10 W,X 00 01 11 10

00 1 00 1

01 1

X X x 11 X X X

10 1 X X 10 1 X X

la = X'/Z+/W'X'/Y'Z Ib = X'/Y+X'/Z
a = (/X+Z)'(W+X+Y+/Z) b = (/X+Y)'(lX+Z) 1ma = l:M(1,4,6,12,14) b = l:M(5,6,13,14)

Given either algebraic form, it is a simple matter of converting to
me other form, or the inverse of either form.

DESIRED FORM
GIVEN FORM

Minterm expansion of F Maxterm expansion of F Minterm expansion of F Maxterm expansion of F

Minterm Maxterm numbers List minterms not Maxterm numbers
expansion of F are those numbers present in F are the same as-

not on the minterm minterm numbers
list for F of F

Maxterm Minterm numbers Minterm numbers List maxterms not
expansion of F are those numbers are the same as present in F

not on the maxterm -
maxterm numbers

list for F of F

A set of logic operators is said to be functionally complete if
any Boolean function can be expressed in terms of this set of
operations. The set; AND, OR and NOT, is functionally com-
plete. The NAND and the NOR gates are each functionally
complete by themselves. Therefore they are called Universal
gates.

Conversion of AND and OR networks to NAND networks is
carried out by starting with a minimal sum of products expres-
sion and then applying the theorem; F = I(lF). This equation
should then be solved using De Morgan's theorem.

x y Z

0 0 1

0 1 1

1 0 1

1 1 0

~=D-Z
Z = I(A'B)

x y Z

0 0 1

0 1 0

1 0 0
--

1 1 0

~=L>-Z
Z = I(X+Y)

Example 4-3

From the K-map in Figure 4-2, find equations for an AND-OR,
NAND-NAND, OR-NAND and NOR-OR networks.

C,D
A,B 00 01 11 10

DO 1 0 1 0

01 1 0 1 0

11 1 1 1 1

10 0 0 0 0

F = A"B+/A"/C"/D+A"C"D
F = /[/(A"B+/A"/C"/D+A"C"D))
F = /[/(A"B)"/(lA"/C"/D)"/(A"C"D))
F = /[(lA+/B)"(A+C+D)"(/A+/C+/D))
F = /(/A+/B)+/(A+C+D)+(/A+/C+/D)

eq.4-1
eq.4-2
eq.4-3
eq.4-4
eq.4-5

Equations 4-2 thru 4-5 are AND-OR, NAND-NAND, OR-NAND
and NOR-OR networks, respectively.

In order to get a network of NOR gates we must start with the
minimum Product of Sums form of F.

Example 4-4

From the K-map in Figure 4-2 find equations for OR-AND,
NOR-NOR, AND-NOR and NAND-AND networks.

/F = /A"/C"D+/A"C"/D+A"/B eq.4-6
F = A+C+/D"A+/C+D"/A+B eq.4-7
F = /[/(A+C+/D"A+/C+D"/A+B)) eq.4-8
F = /[/(A+C+/D)+/(A+/C+D)+/(lA+B)) eq.4-9
F = /(/A'/C'D+/A'C'/D+A"/B) eq.4-10
F = /(lA"/C'D)'/(lA"C'/D)"/(A"/B) eq.4-11

Equations 4-7, 4-9, 4-10 and 4-11 are OR-AND, NOR-NOR,
AND-NOR and NAND-AND networks, respectively.

NAND-NAND and NOR-NOR networks are very common in
industry because both the NAND and NOR gates are universal
gates. Thus. these gates are made in great quantities, making
them more available for designers.

A NAND-NAND network is made from a Sum of Products solu-
tion. The AND and OR gates of the SOP solution are replaced by
NAND gates with all the interconnections staying the same.
Variables that are input directly to the output gate must be
inverted.

A NOR-NOR network is made from a Product of Sums solution.
The OR and AND gates are replaced by NOR gates with all
interconnections staying the same. Any variables that are input
directly to the output NOR gate must be inverted.

An easy way of forming either a NAND network from a Sum of
Product~; solution or a NOR network from a Product of Sums
solution IS to place two inversion bubbles in series between the
two levels as demonstrated in Figure 4-3.

4"4 Multiplexers
Multiplexers are circuits which select one of 2n input lines using
n selector lines. For example, an eight-input multiplexer selects
one of 23 input lines using three select lines.

Example 4.5

Design an 8:1 multiplexer in SOP form by using a truth table.

SELECT MULTIPLEXER INPUTS OUTPUT

A B C 00 01 02 03 04 05 06 07 Y

o ! 0 0 0 X X X X X X X 0

o ! 0 0 1 X X X X X X X 1

o I 0 1 X 0 X X X X X X 0

0 0 1 X 1 X X X X X X 1

0 1 0 X X 0 X X X X X 0

0 1 0 X X 1 X X X X X 1

0 1 1 X X X 0 X X X X 0

0 1 1 X X X 1 X X X X 1

1 0 0 X X X X 0 X X X 0

1 0 0 X X X X 1 X X X 1

1 0 1 X X X X X 0 X X 0

1 0 1 X X X X X 1 X X 1

1 1 0 X X X X X X 0 X 0

1 1 0 X X X X X X 1 X 1

1 1 1 X X X X X X X 0 0

1 1 1 X X X X X X X 1 1

As can be seen from the truth table A, Band C select one of the
eight multiplexer inputs to appear on the output, Y. If A, Band
C = 011, then the D3 AND gate will be enabled while all the other
AND gates will be disabled. This allows D3 to be 'ORed' with
seven zeros and thus end up on the output Y.

J

}----

-==
-==

)--

'\

Example 4.6

Design a dual 8:1 mux with the appropriate PAL device.

When selecting a PAL device several things must be considered.
Will the design need registers, how many inputs and outputs are
there, are the outputs active high or active low? For a Dual 8:1
mux the select lines will be shared but the eight data inputs to
each mux are independent. Thus, we need nineteen inputs and
two outputs for the design. This narrows our choices down to
one PAL device, the PAL2aL2. The output of the PAL2aL2 is
active low but this causes no problems because an active high
output will result by simply inverting all the data inputs.

Multiplexers have been widely used as logic devices as well as
selector circuits. A 4:1 mux can be used to realize any three-
variable function. An 8:1 mux can realize any four-variable
function.

Example 4.7

Solve the K-map in Figure 4-4 and build the circuit with an 8:1
multiplexer.

A,B 00 01 11 10
10

00 0 1 11

12
01 1 0 0 0

14
11 1 1 1 1

16
10 0 0 0 1

A, Band C are used as control inputs to the multiplexer, this
leaves 0 as the only real variable in the problem. The 16-square
K-map can thus be broken up into eight one-variable K-maps.
Each map is solved for one of the eight data inputs to the 8:1
mUltiplexer.

A B C

a a a 10 = /0
a a 1 11 = 1--
a 1 a 12 = /0
a 1 1 13 = a

1 a a 14 = 1

1 a 1 15 = 1

1 1 a 16 = a

1 1 1 17 = /0

10
11
12

:~ OUT

15
16
17
5051 S2

4.5 Decoders
On a multiplexer with n address lines, one of the ",n inputs is
selected to be output. On a decoder with n address lines, one of
the 2n output lines is forced either high or low, depending on the
design of the decoder. Table 4-4 shows a truth table for a 3-to-8
decoder.

SELECT LINES OUTPUT LINES

A B C I g h i j k I m

a a a 1 a a a a a a a
a a 1 a 1 a a a a a a
a 1 a a a 1 a a a a a

~ 1 1 a a a 1 a a a a
1 a a a a a a 1 a a a
1 a 1 a a a a a 1 a a
1 1 a a a a a a a 1 0_
1 1 1 a a a a a a a 1

Table 4-4. Decoder Truth Table

A decoder will have as many outputs as there are possible binary
input combinations. It can be seen from Table 4-4 that only one
output can be equal to 1 at anyone time. The outputted 1
represents the minterm combination that was input to the dec-
oder. It can also be noticed from Table 4-4 that there is not a
combination of inputs that will give all a's on the outputs. Many
designs need this ability. It can be added simply by putting an
enable line in all of the output AND gates. The logic design and
block diagram for the 3-bit decoder in Table 4-4 appears in
Figure 4-5.

Figure 4-5. (a) Logic Diagram for 3-to-8 Decoder
(b) Block Diagram lor 3-to-8 Decoder

, . o ~ ." " ,,'........ '"'' ... - . .. -- ~ .--- ---

I ..
1 ""--- 13

J "..

. ~ "

, 111

J1
J3

"•.•.
J3
J6
J1
J8

", ~•.
••
"" ""43... -"45
46
47

1 17•.

, 16..
, ",

" "•.
11 13.. ,

,-,. IIIU~III~UUC' "'UIII~drdlUr IS a comolnatlonal Circuit that com-
pares two numbers, then outputs one of three signals;
A > B, A = B or A<B.

Example 4.8

Design a 3-bit magnitude comparator in a Sum of Products
form, then fit it into an appropriate PAL device.

B2, B1, BO

,A1,AO OQ() 001 011 010 110 111 101 100

000 0 0 0 0 0 0 0 0

001 rl 0 0 0 0 0 0 0

011 ID 1 0 -m 0 0 0 0

010 1 1 0 0 0 0 0 0

110 1 1 1 1 0 0 1 1

111 ill 1 1 'W 11J 0 1 [1

101 l!J 1 1 1 0 0 0 ~
100 1 1 1 1 0 0 0 0

A>B = A2·/B2
+ A1·/B2·/B1
+ AO·/B2·/B1·/BO
+ A1·AO·/B2·/BO
+ A2·A1·/B1
+ A2·A1·AO·/BO
+ A2·AO·/B1·/BO

B2, B1, BO

,A1,AO OQ() 001 011 010 110 111 101 100

000 0 1 frf 1 1 1 1l 1

001 0 0 1 1 1 1 1\ 1

011 0 0 0 0 1 1 1 1

010 0 0 en 0 1 1 1 1

110 0 0 0 0 0 ,1J 0 0

111 0 0 0 0 0 0/ 0 0

101 0 0 0 0 1 1 0/ 0

100 0 0 0 0 1 .t.!J 1 0

B>A = /A2·B2
+ /A2·/A1·B1
+ /A2·/A1·/AO·BO
+ 1A2*/AO*B1*BO
+ /A1·B2·B1
+ /AO·B2·B1·BO
+ IA1*/AO*B2*BO

The six-variable K-maps are used to produce Sum of Product
equations for A > Band B > A. These equations are then used
to form the two-level logic diagram of the 3-bit magnitude
comparator.

The logic diagram of the 3-bit comparator shows that there are
six inputs and two outputs in the circuit. Each output is derived
from seven product terms. The PAL 16H2 fits the design best.
This PAL device has more inputs than are needed, but it is the
smallest PAL device with enough product terms to realize the
circuit. A NOR gate external to the PAL device can be used to get
the result A = B. The outputs of the PAL device will be the inputs
to the NOR gate, when both inputs equal '0', A equals B.

A binary adder takes two binary inputs, adds them, then outputs
the binary sum. A full adder is the basic building block of any
adding network. A full adder is a 1-bit adder with a carry-in and a
carry-out. The truth table is shown in Table 4-5. The logic design
and block diagram appear in Figure 4-6.

A B CIN y COUT

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

1 ~
~

,
"

3 """ "

• 11

~ ~

"""27

""••31

• ~
"13

"3S

""38

"

• "~

, ~ ~ Il

• ~ "~

, ~ II

~

0123 4 ~ 6 1 1'1011 12 1314 l~ 161111" 20212223 24n262J 212tJOJl,

J1
1
1 -> "·,
I,

, ~ ~t----~ ~
• J.•10

11 '" "11 ./ V1l

""
3 ~ ~t----~ ...•

"
~~

1J
11

" 17
10
11

•.•...
11
II

4 •.. ...•
14

l15
16
11 " 16

" ./ •.•...
"30

"
S ~ ~t----~

II

lII

"" " 15
J6

~

11
]I

"
6 •..

~ ...•..
l..

" =::::::j -......." ".. -::::::; -/ •.•........
"

) ~ ~
~ ...•.. =- l..

" -::::::;-......." 13

" ./ •.•....
5l
54

"
• ~ ~

~ ~
56

J"51

" '- "••61

"", ~ ~ 11

The truth table is used to form K-maps for the outputs Y and Cin.
These simple K-maps are solved to obtain equations for Y and
Cin. The equations are then used to design a Sum of Products
circuit for the 3:8 decoder. The decoder is shown in Figure 4-6.

B,C1N

A 00 01 11 10

o 0

B,CIN

A 00 01

Y ; A'/B'/C1N+/A'/B'C1N+

A'B'CIN+/A'B'/CIN

(b)

CIN:=$-'
COUT

(c)

Figure 4-6. (a) Karnaugh Maps for 3:8 Decoder, (b) Logic Dia-
gram, (c) Block Diagram

Figure 4-7. Parallel 4-Bil Adder

To implement this circuit in a PAL device, each carry-out is
directly input to the next digit's carry-in. Nine inputs and eight
outputs are needed. Three of the outputs (the first three carry-
outs) are only needed so they can be fed back into the circuit as
inputs. A PAL 16L8 is the perfect PAL device for this design.

Even though a digital network is designed correctly, it still may
have erroneous outputs at times due to Hazards. Hazards exist
because physical circuits do not behave ideally. For example, a
D-type flip-flop has two outputs; 0 and /0,which should always
be complements of each other. In the real world 0 may be
switching from 1 to 0 and /0 from 0 to 1. Unless both 0 and /0
switch at exactly the same time 0 will equal /0 for some finite
amount of time. In some cases this could cause the network to
malfunction. The change in the flip-flop output may not cause
the steady-state output of the network to change, but the tran-
sient output may have had a spurious change due to the non-
ideal flip-flop. If the network's output was the set line of a latch,
the latch would set due to the hazard.

There are two types of hazards, Static and Dynamic. Static
Hazards occur when the steady-state output of a network does
not change due to an input change, but a momentary change
does occur in the transition from one state to another. Static
Hazards are qualified further as either static 1 hazards or static 0
hazards. Static 1 hazards exist when the steady-state output is 1,
static 0 hazards exist when the steady-state output is O.

Dynamic hazards occur when the steady-state output is sup-
posed to change due to an input change. The hazard occurs
when the transient output changes several times before settling
down.

As previously mentioned hazards are caused by the non ideal
physical network. Two classifications of hazards causes do
exist; function hazards and logic hazards.

Function hazards can be present when more than one input
variable changes. It is easy to see from the K-map in Figure 4-10
why function hazards exist.

A,B 00 01 11 10

00 1 0 1 0

01 0 1 0 0

11 0 0 0 1

10 0 0 1 0

A function static 1 hazard is present when the input variables A,
B, C and D go from", ooסס > to < 0101 >. If both Band D
changed simultaneously no temporary erroneous pulse would
appear on the output; however in the real world either B or D
would change first. The transient output would have gone to 0
from being momentarily in state < 0100 > or < 0001 >. Looking
at the K-map, it is easy to see function static hazards and func-
tion dynamic hazards.

The easiest way to avoid function hazards is by restricting input
changes to one variable at a time. This method is not always
possible though, because the inputs may not be under your
control.

Logic hazards exist because of the way a function is realized.
Logic hazards can exist even if input changes are rescticted to
one variable at a time.

A K-map is a very good way of locating logic hazards. When
trying to locate the static 0 and static 1 logic hazards on a K-map
it is only necessary to map the 1-sets or the O-sets.

Y,Z
W, x 00 01 11 10

00

w,x 00 01 11 10

00

-01 1 1

11 1 1 1

10 ,l. -!J
(0) (b)

Figure 4-11. (a) Karnaugh Map with Two Logic Hazards
(b) Karnaugh Map with No Logic Hazards

A 1-set is a product expression derived from a grouping of 1's on
the K-map. If there are two adjacent input states that produce a 1
on the output, but are not covered by the same 1-term, a static
logic hazard exists. Logic hazards may be eliminated by rede-
signing the circuit so adjacent input states that produce ones are
covered by the same 1-term.

5.1 Introouctlon
In the previous chapter, combinational circuits were discussed-
circuits whose outputs are determined completely by their
present input. Outputs of some networks depend not only on
their present inputs but also on the sequence of their past inputs.
These circuits are called sequential switching networks.
Sequential networks must be able to remember the past
sequence of their inputs in order to be able to produce new
outputs.

5.2 Latches
In order for a sequential circuit to remember the previous inputs,
it must retain those values in some memory elements. The most
basic memory element is called a latch. Latches are memory
devices with one or more inputs that effect their outputs.

One of the most important properties of the latches is that any
change to the input of the latch will appear at the output and the
new output will be delayed only by the propagation delay of the
gates between inputs and the outputs. All the latches have this
transparency property and usually are referred to as transparent
latches. A latch constructed of NOR gates is shown in Figure
5-1a.

5.2.1 RS Latch
The circuit in Figure 5-1 a is called a SET-RESET or an RS latch.
There are two input lines to an RS latch, which are used to
control the state of the latch. The rules for this type of latch are:

1. If SET = RESET = 0, then the latch remains in the same state
and output does not change.

2. A '1' on the SET and '0' on the RESET line will make the latch
SET to '1',

3. A '0' on the SET line and a '1' on the RESET line causes the
latch RESET to '0' state,

4. If SET = RESET = 1, then Qand/Qwill be'O'atthesametime
which is meaningless. When designing with an RS latch, we
should remember that SET = RESET = 1 is forbidden.

Following an RS latch circuit, its state table, characteristic equa-
tion and waveforms are shown.

SET~O

RESET-9-a

St Rt at at+1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X

0t+1 = St+O"lRt

("'*", St'Rt = 0)

(e)

R_n'-------'n'---_
Figure 5-1. RS Latch (a) Logic Circuit (b) State Table (c) Kar-

naugh Map (d) Waveforms

Let's examine the RS latch circuit when SET = RESET = 1, In
this case the output, Q, will toggle for a long period of time, and it
is unpredictable to know when the circuit will be out of this state.
The following waveforms examine this case:

s~

Latches can have more than two inputs. In Figure5-2, we exam-
ine a latch circuit that has two SET terms instead of one. The
latch circuit and the transition table are shown.

S1~

" :
R 0

~

10
S2
R

S1 S2 R at at+1

0 0 0 X NC

1 X 0 X 1

X 1 0 X 1

0 0 1 X 0

1 X 1 X 0

X 1 1 X 0

The RS latch configuration shown in Figure 5-1a, can be modi-
fied considering that an OR gate with an inverted output is
equivalent to an AND gate with inverted inputs.

A B Q

0 I a 1

a 1 a
1 0 a
1 1 a

The RS latch schematic can be changed, so that it uses the
above equivalence:

'--cr-:R-9-Q
•'--cr-:R-9-Q
!s~:
!s-DPTQ

R~Q

This configuration for realizing a latch is very useful. because it
is in sum-of-product form.

In some applications using latches. it is desired forthe input data
to be effective only when another signal- usually referred to as
a control signal- is active. For these applications. the RS latch
could be modified as shown in Figure 5-3.

It is apparent from Figure 5-3 that only when the control signal
(C) is active, the values of the SET and RESET are effective. So
when C = 0, the changes in the SET-RESET terms would not
have any effect on the output.

A thorough examination of Figure5-3b will show that a change in
the input of the latch does not effect the output simultaneously.
and there is a short delay for this change to appear on the output.
This delay is caused because of the propagation delays of the
gates between inputs and outputs.

o

sl__n_
R~n_

(b)

Figure 5-3. RS Latch with Control (a) Latch Circuit
(b) Waveforms

5.2.2 0 Latch
Other kinds of latches are used in sequential circuits. One of the
most popular latches is called a delay latch - 0 latch. An RS
latch is modified to a D-Iatch by inserting an inverter between S
and R, and assigning S to 0 input term. The 0 latch will take the
value of its input and transfer it to the output. The advantage of
the 0 latch over the RS latch is that in the former only one input is
needed and there is no forbidden state. The only disadvantage of
the 0 latch is that it does not have a "no change" state. This state
could be reached by inserting a control signal, C. as an input to
the latch (Figure 5-4).

D~QC C
R Q

Dt °t+1

0 0

1 1

Q'+1 = 01
(b)

D~

Q~

Figure 5·4. 0 Latch (a) Logic Circuit (b) State Table
(c) Waveforms

Another useful latch is the JK latch which is shown in Figure 6-5.
This latch consists of an RS latch with two AND gates in front of
the inputs. This is most useful because JK latches act like RS
latches, and it is permissible to apply '1' to both inputs simul-
taneously. The state table and characteristic equation for a JK
latch is shown in Figure 5-5.

St Rt at at+l

0 0 0 0

0 0 1 1
-

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 ~ 0 1

1 1 1 0

Figure 5-5. JK Latch (a) Logic Circuit (b) State Table and
Characteristic Equation

5.2.4 T Latch
Another type of latch is a triggered latch (T Latch), which has
onlyone input called T. WheneverT is high, the latch changes
state. T latch is realized by connecting both J and K to one
input, T.

T----r---n-~
LU--0

T a at+l

0 0 0~
0 1 1

1 0 1
-

1 1 0 0t+1 : /T'O+T'/O

= T+Q

Figure 5-6. T Latch (a) Logic Circuit (b) State Table and Char-
acteristic Equation

5.3 Flip-Flops
A flip-flop is also a bistable device - a circuit with only two
stable states. There is one main difference between flip-flops
and latches. Flip-flops do not have the transparency of the
latches. Therefore a change in the input does not effect the
output immediately. A change in the flip-flop is a result of a
change to the control or an asynchronous input. The main
advantage of the flip-flops over the latches is that it is possible
to "read in" a new value to the flip-flop and read out an output
at the same time. This property is not allowed in the latches
because of the latch transparency.

A group of flip-flops form a register. A register is a digital
device that is used to hold information. A register may be a
combination of flip-flops and gates. The gates would control
how and when the data from the flip-flops will be transferred.

In the previous sections, different types of latches were dis-
cussed. The same type offlip-f1ops are available (RS, JK, D and
T flip-flops) and the state equations are the same with the
difference that the output change in latches is realized on the
same clock pulse and in the flip-flops on the next pulse.

Let's take a look at a D-Iatch and a D flip-flop and discuss the
difference between them.

OFF J u
Examining the above waveforms, we could notice that the D
latch and D flip-flop act the same except when the D input
changes while C = 1. Because in the flip-flop at the edge of each
clock pulse the input is seen and the flip-flop maintains the value
till the next clock edge. But in latches the output follows the
input while C = 1.

5.3.1 Characteristic Equations
The characteristic equations for various flip-flops are summar-
ized as follows:

Qt+1 = S+/R"Qt
Qt+1 = J"/Qt+/K"Qt
Qt+1 = T:+:Qt
Qt+1 = Qt

RS flip-flop
JK flip-flop

T flip-flop
D flip-flop

In the above equations Qt+1 is the next state and Qt is the
present state. Generally we could convert one flip-flop to the
other by inserting some gates in front of the RS flip-flop.

5"4 Designing Sequential Circuits
As it was stated earlier, the states of a sequential circuit depend
not only on the present states of its inputs, but also on the past
history of them. A sequential circuit is constructed of flip-flops
and gates. The gates construct the combinational part of a
sequential circuit, and we could have any number of flip-flops
that are needed. A general block diagram of a sequential circuit
is shown in Figure 5-8.

The combinational section receives external binary inputs and
feeds information to the flip-flops. The flip-flops have a feedback
path to the combinational circuit. The circuit has external out-
puts. At the rising edge of each clock pulse the information from
the combinational circuit is read into the flip-flops and the new
outputs are generated. The outputs do not change until the next
clock pulse.

A general block diagram of a sequential circuit has been
reviewed. Now let's look at a more specific circuit. In Figure 6-9,
an example of a sequential circuit is shown.

This circuit consists of two JK flip-flops, an inverter, an AND
gate and an XOR gate. It has an external binary input, X, and an
external ouput, Z.

In this section, we try to familiarize ourselves with the analySIS
and synthesis of sequential circuits. Synthesis will be covered
first, because it would make the analysis understanding easier.

5.4.1 Transition Tables

The states of a sequential circuit are determined by its inputs, the
outputs and states of the flip-flops. In order to examine these
states, we should determine the input equations to the flip-flops.
Let's look at Figure 5-9. Using the characteristic equation for
the JK flip-flop, the input equaiton for Figure 5-9 will be
examined:

JA = X:+:B JB = X"/A Z = A

KA = /X KB = X

The next state equations are:

At+1 = JA"/O+/KA"O = (X:+:B)"/A+X"A
= (X"/B+/X"B)"/A+X"A
= /A"/B"X+/A"B"/X+B"/X

Bt+1 = JB"/O+/KB"O = /A"/B"X+B"X

the above are called the state equations. The corresponding
K-maps are:

x X

A,B A,B

DO 0 GJ DO 0

01 GJ 0 01 0

11 0 11 0

10 0 10 0 0

At+1 8t+1

Using these maps, the transition tables for Figure 5-9 are
derived. There are only four different combinations that A and B
could have. The next state values are derived using these four
possible combinations.

The present state is the state of the flip-flop before the clock
pulse, the next state is the state of flip-flop after the clock pulse
has been applied. The present output, Z, is the output of the
sequential circuit after the clock pulse. As mentioned before, the
circuit can have four states: AB = 00,01,11 and 10. Atthis point,
we try to cover transitions for one input state. Suppose the
circuit is in the 00 state. If an X = 0 input is applied, the next state
will be 00. If an X = 1 is applied, the next state will be 11. the
output for both cases is Z = o.

PRESENT STATE
NEXT STATE

PRESENT OUTPUT
At+1 Bt+1

AB X=O X = 1 Z

00 00 11 0

01 10 01 0

11 00 11 1

10 00 10 1

Figure 5-10, Transition Table for Figure 5-9

5.4.2 State Tables and State Diagrams

Examining the transition table, we notice that AB has four com-
binations. We could assign letters to these four combinations:
So = 00, Sl = 01, S2 = 11 and S3 = 10. Using these assignments
the transition table could be modified to the state table shown in
Figure 5-11.

NEXT STATE
PRESENT STATE ~~-=-1 PRESENT OUTPUT Z

50 50 52 0

51 53 51 0

52 50 52 1

53 50 53 1

Figure 5-11. State Table for Figure 5-9

A state diagram can be derived using the state table. A state
diagram could show transitions between the states when a spe-
cific input is applied. Each state is represented by a circle and the
transition between the state is shown by arrows.

Figure 5-12. State Diagram for Figure 5-9

The condition under which a transition occurs is represented by
XlZ. Applying an input, X, a transition from one state to the other
takes place and a Z output will be produced. The state diagram
for the state table in Figure 5-11 is shown in Figure 5-12.

We have gone through a complete analysis procedure for the
previous example. This process could be summarized as
follows:

1. Using a given network, determine the input equations.

2. Derive the next state equations, using the flip-flop character-
istic equations:

0t+l = D D flip-flop
Ot+l = T:+:O T flip-flop
Ot+l = J'/O+/K'O JK flip-flop
Ot+l = 5+/R"0 R5 flip-flop

3. Derive the corresponding K-maps, and transition tables.

4. Assigning states to the variables, make the state table.

5. From the state table, draw the state diagram.

The analysis of a sequential circuit could be easier to under-
stand, because the same steps could be taken in reverse order. A
flow chart of the procedure is shown below.

5.4.3 Design Examples
In this section, the procedure for designing sequential circuits
will be shown in more detail by analyzing some design prob-
lems. The design steps will follow the flow table shown in the
previous section.

Example 5.1:

Design a clocked sequential circuit which receives an input, X,
and will produce an output, Z = 1, after it has received an input
sequence of 0010 or 100.

Solution:

The first step is to make a state diagram. The state diagram will
start in a state designated by SO, if the next input from 50 state is
a 0, it could be the start for the 0010 sequence. If a 1 is received,
the circuit will go to state 54, which could be the start for the 100
sequence.

When in the 51 state one of two inputs could be received X = 0 or
X = 1. If X = 0 then the circuit could still follow the 0010
sequence, because so far it has received the 00 sequence. If
X = 1 then the input sequence would be 01 so far, which cannot
follow the 0010 any more but it could be a start for the 100
sequence, therefore under this condition the circuit would have
a transition from state 51 to 54.

While in the 54 state, if an X = 1 is received it would stay in the
same state, because a sequence of 11 could still follow the 100
pattern. If X = 0 is received the 100 pattern could continue,
because 10 follows the 100 pattern.

When in the 52 state if an X = 0 is received, it will stay in the 52
state and if X = 1 then it will have a transition from the 52 to 53
state. While in the 53 state, we will have a transition to state 54 if
X = 1, because the input sequence would beOOll which cannot
follow the 001 0 sequence any more, butthe 1 atthe end could be
a beginning for the 100 sequence which is the same state as the
54. If X = 0 is received then the 0010 sequence is complete and
an output, Z = 1, is generated. At the same time in the 0010
sequence, the 10 at the end could be the start of the 100
sequence. ThereforeundertheX = OconditionaZ = 1 isgener-
ated and a transition from the 53 to the 55 state will happen.

While in the 55 state an X = 1 will transfer the circuit from 55 to
54, and an X = 0 will cause a transition from 55 to 56. Under this
condition a Z = 1 is generated for the output because the 100
sequence for the inputs has occurred.

From the 56 state we will see a transition from 56 to 52 if X = 0,
and a transition to 53 if X = 1. A state diagram of this design is
shown in Figure 5-14a.

By analyzing the state diagram, a state table is generated (Figure
5-14b). A careful look atthe state table will show that the 52 and
the 56 states are equivalent, because under X = 0 they both have
a transition to state 52 with Z = 0, and under X = 1 they would
transfer to 53 with Z = 0.50 the state table could be summarized
to Figure 5-14c. After summarizing the state table, there will be a
total of six states left, therefore at least three variables will be
needed for the state assignments (23 = 8). In this case only six
assignments will be used. The state variables are designated by
A, Band C. The state assignments are illustrated in Figure 5-14d.

PRESENT iNEXT STATE I
STATE i X = 0 I X = 1

50 I 51,0 54,0

51 52,0 54,0

52 52,0 53,0

53 55,1 :;4,0

54 55,0 54,0

55 56,1 54,0

56 52,0 53,0

PRESENT

STATE

(ABC)t+1 Z
(ABC)t

X=O X=1 X=O X = 1

000 001 100 0 0

001 010 100 0 0

010 010 011 0 0

011 101 100 1 0

100 101 100 0 0

101 010 100 1 0

J K
O-OOX
0-1 1 X
1 - 0 X 1
1 -1 X 0

(d)

Figure 5-14. Example 5.1 (a) State Diagram (b, c) State Tables
(d) Transition Table

~ DO 01 11 10~
DO 0 0 0 1

01 X X X X

11 X X X X

10 0 0 0 1

~X
DO 01 11 10A,a -

DO X X X X

01 0 0 1 1

11 X X X X

10 X X ~ X

C,X

A,B DO 01 11 10

DO !..J 0 0 0

01 0 1 X X

11 X X X X

107 0 X ~

~X
DO 01 11 10A,B ~

DO X X 1 1

01 X X 1 0

11 X X X X

10 X ~ ~ 1

Jc = B'X·/B'/C'/X

CX

A,B DO 01 11 10

DO 0 0 0 0

01 0 0 0 1

11 X X X X

10 0 0 0 1

Figure 5-15. Karnaugh Maps for Example 5.1

5tate equations are derived using the K-maps. Using the state
equations, the circuit diagram for the design would be obtained
as shown in Figure 5-16. The state equations are summarized as
follows,

JA = /S'X+S·C

KA = /X·C

JC = S'X+A'/X

KC = /S+X

JS = C'/X

KS = C

From the Assignment table, the K-maps for each state are derived. z
In this design the circuit is realized by JK flip-flops, therefore two
K-maps are needed for each state variable (shown in Figure
5-15).

A,B DO 01 11 10

DO X X X X

01 X X X X

11 X X X X

10 0 0 0 1

Example 5.2

Derive the state diagram, state table, and state equations of a
sequential circuit which adds five to a binary number in the
range of 0000 to 1010. The inputs and outputs should be serial
with the least significant bit arriving first. Realize this design with
three JK flip-flops.

Solution:

In Figure 5-17a, all the possible combinations for the input and
the output are shown. The state table starts at state A. At time to
the first input is received, if X = a then we look at the map for all
possible combinations and notice that at to whenever X = 0, the
output is a 1. Thus, if the present state is A, under X = a the
output is Z = 1. On the other hand, if X = 1 the map shows that Z
will be a O. At time t1 if X = a and the sequence of the inputs has
been DO then the output would bea01. So in this transition Z = O.
All the states of the state diagram could be derived by inspection
of the table in Figure 5-17a. The state diagram will be completed
as in Figure 5-17b.

The state table is drawn using the state diagram. Inspecting the
state table will show that some ofthe states are equal. States H, J
and L will have the same next state under X = a and X = 1, and
produce the same outputs, therefore H = J = L, and if they
appear anywhere in the state table, they will be replaced by the H
state. States I, K, M, Nand Pareequivalentforthesame reason-
ing, thus they all will be replaced by 1 in the state table. Because
H = J = L and I = K = M, states D, E and F are equivalent. There-
fore, the state table would be summarized to the table shown in
Figure 5-18b. There are a total of seven states used in the last
table, so three state variables will be needed. The state variables
are called A, Band C. A complete transition table is shown in
Figure 5-18c.

The K-maps are drawn, using the state table. The state equations
are calculated using the K-maps.

JA = B'X+B"C KA = B
JB = IA'C+A'/C KB = A+/C'X+C'/X
JC = IA'/X KC = A+B'X

Z = B'/X+NX+INIC'X+/B'C·X

x Z
BINARY INPUT OUTPUT

t3 t2 11 10 13 12 11 10

a a a a a 1 a 1

a a a 1 a 1 1 a
a a 1 a a 1 1 1

a a 1 1 1 a a a
a 1 a a 1 a a 1

a 1 a 1 1 a 1 a
a 1 1 a 1 a 1 1

a 1 1 1 1 1 a a
1 a a a 1 1 a 1

1 a a 1 1 1 1 a
1 a 1 a 1 1 1 1

I NEXT STATE I Z IPRESENT STATE :
i X" 0 i x" 1 X=O I X = 1

A B ! A 1 a
B I 0 E a 1

c I F I G I 1 I a I

0 I H I I 1 a
E J K 1 : a

. F ! L M 1 I a
G ! N P a 1

H I A I A I a 1
-

I I A - 1 -

J A A a 1 I
K A - 1 -

L A A a 1

M I A - 1 -

N A - 1 -

P A I - 1 -

NEXT STATE Z
PRESENT STATE

x=o X=1 x=o X = 1

A B A 1 a
B 0 0 a 1

c F G 1 a
0 H I 1 a
G I I a 1

H A A a 1

I A - 1 -

NEXT STATE Z
PRESENT STATE

X=O X=1 x=o X = 1

000 001 000 1 a
001 011 011 a 1

010 011 100 1 a
011 101 110 1 a
100 110 110 a 1

101 000 000 a 1

110 000 - 1 -

Figure 5-18. Example 5.2 (a) State Table (b) Reduced State
Table (c) Transition Table

C,X

A,a 00 01 11 10

00 0 0 0 0

01 0 1 1 1

11 X X X X

10 X X X X

A,a 00 01 11 10

00 0 0 1 1

01 X X X X

11 X xl x x

10 1 11 0 0

Ja = A-/C+/A-C

C,X

A,a 00 01 11 10

00 1 X X

01 1 X X

11 0 X X X

10 0 X X

Jc = lA-IX

~A,a 00 01 11 10

00 X X X X

01 X X X X

11 1 X X X

10 0 0 1 1

~x
A,a 00 01 11 10

-
00 X X X X

01 0 1 0 1

11 1 X X Xi
10 X Iv x IvT

c,x

A,a 00 01 11 10

00 X X 0 0

01 X X 1 0

11 X X X X

10 X X 1 1

Design a sequential pattern detector that receives an input and
produces an output, Z = 1, if, and only if, there has been only one
group of ones in the input sequence. Derive the state diagram,
state tables and state equations using three 0 flip-flops.

Solution:

The state diagram is drawn as in Figure 5-21, The state table,
transition table, and K-maps can be drawn easily from the state
diagram. The state equations are calculated as follows:

DA = A+S'/X Os = S'/X+/NX Z = S

The state tables are shown in Figure 5-20, and the K-maps are
shown in Figure 5-21.

PRESENT NEXT STATE
Z

STATE X=O X = 1

80 80 81 0

81 82 81 1
-

82 82 83 1

83 83 83 0

NEXT STATE
AB Z

X = 0 X = 1

00 00 01 0

01 11 01 1

11 11 10 1

10 10 10 0

Z=B

Figure 5-21. Karnaugh Maps for Example 5.3

Counters are among the most commonly used sequential cir-
cuits. In the following sections, they are covered in detail.

A register that goes through a predetermined state upon receiv-
ing an input pulse is called a counter. Counters are one of the
simplest sequential circuits, and are found in almost all equip-
ment containing digital logic. According to what sequence of
logic a counter follows, we will have different types of counters:
SCD, binary, etc.

The binary counter is one of the simplest counters. An n-bit
binary counter is a register with n flip-flops and associated
combinational logic that follows the sequence of n-bits from
Q-2n-1.

Example 5.4

Design a 3-bit up/down binary counter. There are three outputs
from the binary counter: DA, OS and DC. The input to the
counter is X, the counter will increment if X =1, and decrement if
X = O. Design this circuit using three 0 flip-flops.

Solution:

This circuit would have eight different states, because the 3-bit
counter goes through eight different states. The states are called
qO, q1, q2, q3, q4, q5, q6 and q7. If X = 1 each state will have a
transition to its next higher state. For example qO will go to q1, q1
will go to q2 and so on. If X = 0 then each state will change to its
previous state. For example, q7 will go to q6, q5 to q4 and so on.

The state diagram of this design is shown in Figure 5-22a. The
state, and transition tables which are derived from the diagram
are shown in Figure 5-22b. The K-maps and the state variables
are shown in Figure 5-22c. The state equations are calculated
using the K-maps. The equations are summarized as follows:

DA = /N/S'/C'/X+/A'S'C'X+A'S'/C'X+N/S'X+NC'/X

Os = /S'/C'/X+/S'C'X+S'/C'X+S'C'/X

DC = /C

PRESENT : NEXT STATE:

STATE I XeD I X ~ 1 I
PRESENT I NEXT STATE

ABC IX~OIX~1

000 111 I 001

001 000 010

010 001 all

all 010 100

100 I all 101

101 100 110

110 101 111

111 110 000

C,X

A, B 00 01 11 10

00 CD 0

01 0

DA = IA'/B'/C'/X+/A'B'C'X

+ A*B*/C+A*/B'"X+A*C'"/X

C,X

A, B 00 01

00 1

~ 00 01 11 10

00 1 1 0 0

01 1 1 0 0

11 1 1 0 0

10 1 1 0 0

DB = IB'/C'/X +/B'C'X

+ B'C'/X
(c)

Figure 5-22. 3-Blt Up/Down Counter (a) State Diagram (b)
State Tables (c) Karnaugh Maps

Example 5.5

Implement the 3-bit up/down counter of the Example 5.4 using
the PAL device most suitable for the design.

Solution:

The 3-bit binary counter designed in the previous example will
require three flip-flops. The PAL device for this design will
require at least three flip-flops. Since there is no PAL device
available that has only three flip-flops, the best PAL device will
be the PAL 16R4 because it has four flip-flops and contains the
AND-OR gates needed to realize the combinational circuit of the
counter. The schematic of the 3-bit up/down counter using the
PAL 16R4 is shown in Figure 5-23.

Design of a binary counter could be complicated by adding new
features to it. A counter can be made to count up or down, load
new values in, or clear the present state of the counter and reset
to a's. These features are discussed in the following example.

Example 5.6:

Design a 4-bit up/down counter that receives an input, X, if X = 1
the counter counts up and if X = a it counts down. The load
feature loads new values into the output registers. The clear
operation clears the output registers and resets them to all lows
(zeros). Design this counter using D-type flip-flops and realize
the circuit with the proper PAL device.

Solution:

First we design a 4-bit up/down binary counter, then we design
the new function into it. A binary counter could have sixteen
different possible states. The procedure of making the state
diagram, state table, and K-maps is similar to the design of the
3-bit counter. The corresponding drawings are shown in Figures
5-24 and 5-25.

(b)

Figure 5-23. 5-Bit Counter (a) State Diagram (b) State Tables

PRESENT NEXT STATE

STATE X=O X = 1

qO q15 ql

ql q14 q2

q2 q13 q3

q3 q12 q4

q4 qll q5

q5 ql0 q6

q6 q9 q7

q7 q8 q8

q8 q7 q9

q9 I q6 ql0

ql0 I q5 I qll

qll q4 q12

q12 I q3 ! q13

q13 I q2 ! q14

q14 ql q15

q15 qO i qO

PRESENT NEXT STATE

STATE X=O X = 1

0000 1111 0001

0001 1110 0010

0010 1101 0011

0011 1100 0100

0100 1011 0101

0101 1010 0110

0110 1001 0111

0111 1000 1000

1000 0111 1001

1001 0110 1010

1010 0101 1011

1011 0100 1100

1100 0011 1101

1101 0010 1110

1110 0001 1111

1111 0000 0000

Logic Diagram
elK I 1>

012 J 4 ~ 6 I .91011 12 lJ 14 1~ 16111119 102111lJ 14n1621 21293031

0 1,
I "-- "J. ./ V,,
1

l--t".>
..•

•..
• 1,

10

" " "" v"""
~ ••¥ ~

•..
"

~
"II ...••.
"

~

20 V
"21
lJ

~~. ~
"

~"" ..••..
11

~

II •....
"JO
", ..

¥ --c•..
Jl

~
JJ

D1" "J5

" --- ••••
11

"" ~6 ~•.. ...•
••

~
..
"••
"

~

.. ./ ••••....
", ...,-•.. ...•..

1..
••
" 13

" V"••••
I

.. ~~•...
•• J52

•••• 12•• ./ V"Il
", ..

~~,....,. ~

Monolithic W Memories

A,B

C,O,UP 00 01 11 10

000 1 1 1 1

001 1 1 1 1

011 0 0 0 0

010 0 0 0 0

110 0 0 0 0

111 0 0 0 0

101 1 1 1 1

100 1 1 1 1

A,B

C,O,UP 00 01 11 10

000 1 1 1 1

001 0 0 0 ol
011 1 1 1 1

010 0 0 0 ol
110 1 1 1 1

111 0 0 0 ol
101 1 1 1 1

100 0 0 0 01

A,B

C,O,UP 00 01 11 10

000 1

001 0

011 0

010 0

110 0

111 1 0

101 0

100 0

A,B

C,O,UP 00 01 11 10

000 1 0 1 0
001 0 ~ 1 1

011 0 0 1 1

010 0 0 1 1

r
110 0 0 1 1

111 0 1 0 1

101 0 0 1 1

100 0 0 1 1

/B = /B'C'/O+/B'/C'UP
+ /B'O'/UP+B'C'O'UP
+ B'/C'/O'UP

/A = /A'/C'UP+/A'O'/UP
+ /A'/B'C+/A'B'/O
+ A'/B'/C'/O'/UP
+ A'B'C'O'UP

As you might have noticed, the equations are derived for the low
outputs because many PAL devices have only low outputs. The
equations derived so far are written just for an up/down counter.
To implement the clear function, the signal should be ANOed
with the other terms in the equations for A, S. C and 0, and a
CLEAR term should be ORed with each equation. The LOAD
function should be ORed with all the terms to make them lows
and another term should be added to each equation that
consists of LOAD' (new value). The modified and final equations
are listed below:

/A = /LOAO'/CLW/A' /C' UP
+ /LOAO'/CLW/A' O'/UP
+ /LOAO'/CLW/A'/S' C
+ /LOAO'/CLW/A' S' /0
+ /LOAO'/CLW A"/S"/C'/O'/UP
+ /LOAO'/CLR' A" S' C' 0' UP
+ LOAO'/CLW AI
+ CLR

/S = /LOAO'/CLR'/S' C'/O
+ /LOAO'/CLR'/S'/C' UP
+ /LOAO'/CLW/S' O'/UP
+ /LOAO'/CLR' S' C' O' UP
+ /LOAO'/CLW S'/C'/O'/UP
+ LOAO'/CLW/SI
+ CLR

/C = /LOAO'/CLR'/C'/D' UP
+ /LOAO'/CLR'/C' O'/UP
+ /LOAO'/CLW C' O' UP
+ /LOAO'/CLR' C'/O'/UP
+ LOAD' /CLW /CI
+ CLR

/0 = /LOAO'/CLR' 0
+ LOAO'/CLW/OI
+ CLR

Using the above equations and PAL 16R4, the schematic for the
4-bit counter could be generated. This design is shown in
Figure 5-26.

As we try to design bigger counters, the design of them using the
state tables and K-maps gets more diffucult. In the design of the
4-bit counter, K-maps were used. If we try to design a counter
bigger than this summarizing the equations will be very tough to
do. Therefore, we try to find a general solution for solving the
counter design problems. Let's try to write the equation for the
most significant bit (MSS) of an n-bit binary counter (an).

Let's look at the case where the counter is counting up. The new
value of an will depend on the carry-in from bit On-1 into an. If
all least significant bits (LSSs) are high when we count up, we
Will have a carry-in from On-1 into an.

CIN: = 0n_1·0n_2· ..·01·00·UP

Now let's look at the following table:

UP an CARRY INTO an NEW an

H L L L

H L H H

H H L H

H H H L

Carry-in Table

Examining the above table, it is easily concluded that:

an := On:+: carry-into an
an := On:+:(On-1·0n-2· ..·00·UP)

Now that we have calculated the equation for the count-up case,
let's look at the count down. Carry-in from On-1 into an will be
high if all the LSSs are low and we are counting up.

Borrow in an := /On-1·/0n-2· .../00·/UP

Let's look at the following table:

UP an CARRY INTO an NEW an
L L L L

L L H H

L H L H

L H H L

Monolithic W Memories

,
0123 .561 191011 12111415 1611111920212223 24252621 212930)1

0

l1

2
"" '93· ./ Vs•

1

~ ••> ..•
"I----•..

• >---J9
10

11 18
12

13
14

".. ...
3 ~•.. ""

"
~

11
11 ...••.
"

~

20 J V
21

22

23

~
4 ~~ ..•

"
~

25

" I- ...••.
21

I

~

~28
29
30
11

~
5 :>~ ""

3l

~
3l
34••.
3S

~

36 V
31

38
39.. ~

6 •.. ...•
40

~
41
42 ""
4l

~

.. ./ •.........
41

~"T
..•

•.. >---J..
SO

" 13
52
53
54

55

~ ..~ ~
•..

56 >--J"58
59 12
64

""63.. - ~, --I~
r ..• 'f

On = On:+: Garry-into On
On = On:+:(I0n-1'/On-2' ../Ol·/OO·/UP)

Therefore:

On = On:+:(On-1·0n-2····01·OO·UP)
+ On :+:(I0n-1 •/On-2' .../01' /ooru P)

Let's try to summarize the above equaiton. For simplicity, let's
give shorter names to different parts of the above equation.

A = On
B = On-1·0n-2· ...01·OO·UP
C = IOn-1·/0n-2· ...I01·/00·/UP

Therefore the equation is expressed as:

A = A+:B
+ A+:C

Band C are exclusive from each other, so the above equation
could be summarized to:

then:

On = On:+:(On-1·0n-2····01·OO·UP)
+ (/On-1' /On-2' ...101'/00' /UP)

Using the solution discussed above, let's try to solve a design
problem.

Example 5.7:

Design an n-bit counter that can count up, count down, SET and
LOAD new values into the counter. SET overrides LOAD, count
and hold. LOAD overrides count. Count is conditional on carry
in, otherwise it holds.

Solution:

The above operations are exercised in the function table and
summarized in the operations table.

SET LD CIN UP 0 a OPERATION

H X X X X X Set all HIGH

L L X X D D Load D

L H H X X 0 Hold 0

L H L L X o plus 1 Increment

L L L H X o minus 1 Decrement

Now using the operations table, we could start writing the equa-
tions for our counter. We will try to generate a general equation
that can be used for any bit in the counter. If we take the nth bit,
we have Dn as input and On as output. There are four operations
that can happen for any given bit: LOAD, HOLD, SET and count
up or count down. We load the new value in the counter's
register if SET is OFF (ISET = H). So On is replaced by new Dn
value if (ISET = H, LOAD = H), the expression that will allow
loading the new value will be /SErLOAD·/Dn. In order to be
able to HOLD the On value, we should have the following condi-
tions: (SET = L, LOAD = L, CIN = L). So the expression for
holding the old value is:

/SEr/LOAD'/CIN'On

There are two more functions for the counter: count up and count
down. These two functions have been calculated in Eq. 6.1.
Using this equation and the calculation forthe HOLD and LOAD
cases, the final equation for the nth bit is calculated.

On = /SErLOAD'Dn Eq.5.2
+ /SEr/LOAD'/On

:+: /SEr/LOAD·CIN·UP·00·01· ...0n_1
+ /SEr/LOAD·CIN·/UP·/00·/01· ...IOn_1

Using the above general equation, any large counter could be
designed.

EI

PAL® Device Introduction

PAL/HAL ® Device Specifications

PAL Device Applications

PLE™Circuit Introduction

PLE Circuit Specifications

PLE Circuit Applications

Article Reprints

Representatives/Distributors

PALASM® Software Syntax 5-1
Table of Contents for Section 5 5-2

Introduction 5-3
Structure of PAL Device Design Specifications•..........•........•...... 5-5
Section 1: Declaration Section•.............•............ 5-6
Section 2: Functional Description•.......................... 5-8
Section 3: Simulation•.....•................ 5-13

Simulation Syntax Overview•..•..•................ 5-14
Details of the Simulation Syntax•..•..•........•.... 5-14

PALASM2 software is a high-level language to describe implementation and simulation of logic designs. For every
logic application a PAL device Design Specification (PDS) can be created using PALASM2 software syntax. This Pal
device Design Specification consists of a set of functional equations and simulation commands. The functional equa-
tions describe how the logic is to be implemented on PALdevice and the simulation commands describe how the logic
should behave after implementation. The detail of the syntax of the language will be described in later sections.

The PAL device Design Specification is processed by the PALASM2 software compiler at the front end and an
intermediate file is created. This intermediate file is then processed by various modules at the back end to accomplish
various functions. At present MMI has developed an XPLOT generator which can generate the fuse patterns and the
standard JEDEC file from PDS which can be downloaded to various programmers to program a PAL device.

Also available is a SIMULATOR package which will exercise each simulation command in the PDS against the
functional description to check for the functional validity of the design. The output of the SIMULATOR is a set of vectors
which can be physically exercised against the programmed part. (At date of publication the SIMULATOR is an ALPNA
version, check with your local FAE for current availability.)

FRONT
ENO

+
+

BACK
END

-Assembles PAL device Design Specifications.
-Simulates and verifies the logic behavior.
-Generates PAL device fuse patterns in JEDEC format.
-Reports errors in syntax, assembly and simulation.

-New structured logic description syntax models more complex PAL devices and permits compaction of logic
descriptions.

-String substitution allows concise mnemonic names for long frequently used logic expressions.
-Powerful functional simulator accurately models asynchronous and mixed PAL architectures.
-Structured high level language for describing test procedures, instead of long truth tables.

20-pin Devices:

10H8 10L8 10P8
12H6 12L6 12P6
14H4 14L4 14P4
16H2 16L2 16P2
16L8 16P8 16C1
16R4,6,8 16RP4,6,8 ZHAL20

24-pin Devices:
6L16 8L14
12L10 12P10 14L8 14P8
16L6 16P6 18L4 18P4
20P2 20L2 20C1
20L8.10 20X4,8,10 20R4,6,8
20RA1 20S1 20P8E 20RS4,8.10

MegaPAL:
32R16 64R32

PALASM2 software is implemented quite differently than PALASM1 software. It is composed of several interacting
programs coupled by disk files. The menu system (currently IBM-PC only) attempts to mask this somewhat, but floppy
based files slow interaction. RAM or hard disks are prefered for production use. The principle benefit of the reorganiza-
tion is the freedom from fixed limits within the design file.

As mentioned, in the feature section, the syntax of PALASM2 software is significantly different from PALASM1
sofstware. It allows description of asynchronous devices like the 20RA 1 and devices of much higher complexity, like the
MegaPAL devices. The syntax will be enhanced to include description capability for state machines and bus oriented
logic elements.

The logic simulator is a true event driven simulator, modeling both synchronous and asynchronous events accurately.
Cross-coupled logic functions, asynchronous set and reset terms, and tri-state devices are all simulated correctly. The
user need not be initially concerned with predicting all device outputs each timing cycle the simulator may be operated
as a logic analyzer, capturing and displaying output behavior. Once the design is understood, specific output values
may be sampled selectively, instead of viewing each output cycle.

PALASM2 software also omits several features provided within PALASM1 software. They are fault coverage predic-
tion for test vectors, documentation command, device signal/pinout display, support of security fuse and printing of logic
equations for each product term in fuse plot. Some of these represent a change in philosophy, others will be provide in
later versions of the program.

This section gives an overview of the PAL device Design Specification (PDS). It explains the three sections of the
PDS with regard to the layout of each section, the information to be provided in each section, and what function it serves
in the design process. The detailed syntax and contents of each section will be discussed in the succeeding sections.
Examples will be used to illustrate correct syntax along with common misconceptions.

1 : Declaration Section
-Customer Profile Information
-Pin list Information

2 Functional Description
-Reserved Words
-Basic Operation
-String Substitution
-Combinatorial Equations
-Registered Equations
-Equations for special functions.
-Boolean operators

3 Simulation Description
-Simulation Directives
-Structured Control Constructs

This section is used to record information about the customer necessary for documentation and future reference the
type of PAL device used. the signal names given to each pin of the device, and some predefined states and strings to be
used in the design. This section must come before all the other sections of the PDS. Any signal name that is going to be
used in the equations has to be declared first in this section. There is a customer profile information section for
documentation and future reference purposes.

Comments may be inserted freely, and begin with a semi-colon character-";". Any of the items described may be in
lower or upper case all items are case-folded before processing. Line length maximum is 13 characters all beyond that
are ignored. All control characters (including tabs) are treated as a single space. The maximum length of any legal
statement or logic equation is 100 tokens (a token is either a pin name. a simulation command. a keyword or a logical
operator).

-Customer Profile Information.
-Pin list information.

Customer
Profile

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

This is an example to illustrate the syntax
ABC1234-MMI
000-ABC1234
Imtiyaz Bengali
Monolithic Memories Inc.
Dec. 5. 1984

CLK ONE
IOE

/TWO THREE SET RESET NC NC NC WRITE READ GND
OUT1 OUT2 NC NC NC lACK IMMI NC NC MEMADR VCC

keyword
TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

optional data
<title of the design>
<pattern identification>
<revision identification>
<designer's name>
<company name>
<date of creation>

NOTE:

-The keywords should appear in the format described in the table above one to a line. You may put optional data on
the lines following the keywords it will be retained to annotate your fuseplot and simulation files. Warning messages
will be generated if the keywords are omitted you may still generate fuseplot and simulation results.

<chip name> can be any alphanumeric word (except a reserved word or a PAL type) and is a required identifier.
It should follow the same conventions for syntax as a pin name.

For example PAL 16R8, PAL 16R8A, PAL 16R8A2, PAL 16R8A4, and PAL 16R8B all have the same generic name
PAL16R8.

The length of signal names cannot exceed 14 characters. At least one of these characters must be a letter the
remainder may be letters, numbers, or underscores.

Special pins of the device (like the power and ground pins) are assigned special names. The power pin is assigned VCC
and the ground pin is assigned GND. These names should come at the appropriate places in the pin list. For example in
PAL20R pin number 2 is VCC and pin number 1 is GND. If any pin is not used, it must be specified as NC (noconnect).

Pins are listed in the order expected for DIP (dual inline package), reguardless of whether the user is planning to
eventually program DIP, LCC or Chip Carrier devices. Any pin reording for other packages must be done by the
programmer or other special fix1ure. The PAL64R3 device pinout is specified for 84 pin package.

Only numbers, letters and the underscore character may be used to create a pin name.
Do not use reserved words or PAL device types as signal name.

All the implementation details of an application are given in this part of the PDS using boolean equations. The
information provided in this section is used to generate the locations of the fuses to be blown during programming of the
part. Depending on the type of outputs, one can use a combinatorial equation identified by '= or a registered equation
identified by ':='. Also many outputs, such as the PAL20RA10, have special programmable functions associated with
them functional equations can be used with these. The following lists different ways of specifying a function:

EQUATIONS
<signal>
<signal>
<signal>.<sfunc> =

keyword marking the begining of ; functional description.
Function (<signal>, <operator»
Function «signal>, <operator»
Function «signal>, <operator»

<signal> is the name of a pin from the pin list
<operator> I,·, +, :+:
<sfunc> is a special function associated with the output signal.

Certain PAL devices such as the PAL20RA1 have programmable functions for registers the Clock function (CLKF),
the Set function (SETF), the Reset function (RSTF) and the Tristate function (TRST). These functions are represented
by special equations using the keyword of the special function to suffex the signal name, for example:

TITLE
CHIP
SETF
THEN

PATTERN REVISION AUTHOR COMPANY DATE
EQUATIONS SIMULATION STRING DO
RSTF CLKF TRST PRLD CLOCKF GENERATE
ELSE BEGIN END VCC GND NC

Note: All PAL types are also reserved words.

Basic Operators

The basic operators are defined to perform INVERT, AND, OR, and EXCLUSIVE-OR operations. These basic
operators can be used to describe any logic function on the right side of the equation.

-INVERT operator
This operation is used whenever a signal has to be inverted. It preceeds the signal to be inverted.
For example: IA means "not a"

-AND operator
This operation is used when ANDing two or more boolean variables. The operation of ANDing of all
the signals result in a product term. For example A IB C means "A AND (NOT B) AND Coo

+ -OR operator
This operator is used when ORing two or more product terms andlor signals. For example: A + IC
means "A OR (NOT C)"

:+: -EXCLUSIVE-OR operator
This operator is used when EXCLUSIVE-ORing two or more product terms andlor signals. For
example: A :+: E means "A EXCLUSIVE-OR E"

With these basic logical operators, one can write logic equations for almost any application. The most useful form of
the equations will be in the sum-of-products form it is the only currently supported form. True logic expansion and
simplification will be supported in future versions of the PALASM software system. The following sections will illustrate
the use of all these operators, except for the XOR. Operator precedence is in the order listed 1,"+,:+

Monolithic W Memories

In many applications it is possible that a certain expression or part of it is repeated many times. To eliminate repetition
of typing the same text again, one can declare that text with a shorter word using string substitution. Then instead of the
full text one can use the word used to identify the text. String substitution is textual replacement and the compiler does
not try to find any logical meaning to it. Hence the user should be very specific in what he wants to substitute.

<string name> is any user defined name of up to I alphanumeric characters. The name has to be unique. This means
that the name should not be a reserved word, one of signal names defined in the pin list, or one of the string names used
elsewhere.

<text to be substituted> is any legal expression and should be specified within single quotes. The length of the text to
be substituted is not limited to one line it may be made up of several lines. There is no fixed length to any single string
memory is allocated as necessary to store each. Each part of it must follow the syntax rules of the pin name identifiers
and be delimited by blanks or tabs.

The compiler does one to one substitution of the string name with the text to be substituted. It does not try to find the
meaning of an expression after substitution.

Ex. 1: STRING LOAD
STRING CARRY
STRING INPUT

LD' ICIN'
ILD • ISET • ISET • CUP'
A1 + IA2 + A3'

If in the equation section there is an occurrence of INPUT then an expression like lAllA A will result after substitution
and not I(AI IA A3) as the user most probably would expect. If the later meaning is what the user wants, the string
definition should be:

output = <product term> + <product term> + ...
<product term> ===» <signal> •...
<signal> '. <signal> ===» lidentifier identifier.
identifier ===» declared pin name

The combinatorial equation is identified by the operator '='. The signal on the left side of the '= sign is the output for
which the equation is described. This output signal can be active-high (output) or active-low (Ioutput).

For PAL devices with programmable polarity, the polarity fuse is blown or left intact according to the polarities given to
the left side of the equation and those used in the pin list when they are the same, the fuse is blown when they differ the
fuse is left intact. For example:

CHIP POLARITY-EXAMPLE PAL16P8 ABC D IE IF nc nc nc GND
Y IZ W N NC NC NC NC NC VCC

EQUATIONS
Y=A'B+/C'D
IZ=E'F+/F'/E

IW= E
V = If

In this example, equations for outputs for Y and Z have the same polarity as they are described in the pin list. In
programmable-polarity parts (PAL16P8), the polarity fuse is blown. If this is an active-low part (PAL16L8), then it is an
error.

The programmable-polarity feature allows the user to describe the function in either active-low or active-high state.
The user does not have to transform the function using De Morgan's theorem.

This section will discuss the syntax of registered equations. These equations are described for outputs with a a
register. For example: Each output of PAL16R8 is a registered output.

output := <product term> + <produc term> + ...
<product term> ===» <signal> •...
<signal> •. <signal> ===» lidentifier identifier.

The clock to the register is the special clock pin depending on the PALtype, (example PAL16R has pin number as the
clock pin), or the clock is generated by a special product term described in a CLKF functional equation on the 20RA10.

Monolithic mMemories

For programmable polarity parts, the polarity fuse is blown or left intact according to the polarity given to the left side of
the equation and that used in the pin list when they are the same, the fuse is blown, when they differ the fuse is left
intact. For example:

CHIP POLARITY-EXAMPLE PAL16RP8
CLK ABC 0 IE IF nc nc GNO
Y IZ W N NC NC NC NC NC VCC

Y=A·B+/C·O
!Z=E·F+/F·/E

IW= E
V=/f

In this example, equations for outputs for Y and Z have the same polarity as they are specified in the pin list. In
programmable polarity parts (like PAL16RP8), the polarity fuse is blown. If this is an active low part (PAL16R8), then this
is an error.

The programmable polarity feature allows the user to describe the function in either active-low or active-high state.
The user does not have to transform the function using Oe Morgan's theorem.

In some PAL devices, the outputs have special functions which are controlled by a programmable product term. For
example in PAL16L8, the tri-state function is controlled by a product term.

1) programmable clock function
2) programmable set function
3) programmable reset
4) programmable tri-state

In order to describe the functions to be implemented in the PAL device, functional equations are used. Order of
appearance in a PAL device design specification is not significant for functional equations. These functional equations
have the following syntax.

The left side of the equation identifies the function for the output defined by the right side of the equation. The following
keywords are to be used to identify the functions:

CLKF
SETF
RSTF
TRST

for programmable clock function.
for programmable set function.
for programmable reset function.
for programmable tri-state function.

SETF -If the output is defined as combinatorial, default value is VCC.
If the output is defined as registered, default value is GNO.

RSTF -If the output is defined as combinatorial, the default value is VCC.
If the output is defined as registered, the default value is GNO.

In PAL20RA10, it is always possible to bypass the register by having the SET and RESET product terms high. There
are two ways of doing this. One way is to be explicit as follows:

OUT := A + /8 + D' E ; Output defined as registered OUT.SETF = VCC OUT.RSTF = VCC OUT.ClKF = GND The
other way is to be implicit as follows:

In the implicit case, the program XPlOT will take care of the default conditions for SETF, RSTF and ClKF

Default for registered output

OUT:= A + /8
OUT.SETF = GND
OUT.RSTF = GND
OUT.ClKF = ClK

or he can be implicit as follows:
OUT:= A + /8
OUT.ClKF = ClK

OUT:= A + 8
OUT.ClKF = ClK
OUT.TRST = VCC.

If the output is defined as a registered output, the ClKF MUST 8E DEFINED. Otherwise, XPlOT will give an error.
You can define it as GND if you do not want to use it but it must be defined.

If the output is defined as combinatorial, then it is redundant to define the ClKF. XPlOT will give an error if it is
defined.

The user must remember that the polarity fuse is located in front of the register and hence effects the inversion of the
data path. The data path is the output of the OR gate through polarity fuse and into the register. It does not effect the set
or reset function of the output.

Simulation is a very important part of any design cycle. After the user has defined the logic in terms of equations, it is
neccessary to be able to verify that the equations do implement the required function. The basic feature of any
simulation is the ability to give a set of inputs to the design and be able to check the outputs for correctness. This ability
to give values to inputs and observe the outputs is crucial to any simulation language.

PALASM2 software has an 'Event Driven Simulator supporting all the different PAL device architectures, both
asynchronous and synchronous. The program is so designed that internal events generated by asynchro-
nous/synchronous feedbacks and external events generated by the user are simulated in a very realistic way. Oscil-
latory conditions are also detected and reported to the user. Conflict in the expected and the actual value of any signal is
an error which is detected by the simulator and reported to the user. The simulation continues from that point using the
actual value of the signal.

The PALASM2 software language has simulation commands which are 'English like words thereby making the
simulation specification very natural to read and understand. There are facilities for iterative looping, conditional
branching, setting of signals, checking of signal values, and selective observation of signals. All these commands will
be explained in the following paragraphs.

All the simulation results are stored in two files, a history file «filename>.HST) and a trace file «filename>.TRF).
The history file has the values of all the signals from the start of simulation to the end. The trace file has the values of the
signals mentioned in the TRACE-QN statement and only up to the next TRACE-QFF statement.

The simulation results are organized in a horizontal format resembling a timing diagram. Each page contains 4
vectors. a maximum of 51 vectors are allowed with this release of the simulator. Corresponding to each SETF and
CLOCKF statement in the simulation a 'g or 'c appears on the horizontal axis in the result files. A CLOCKF statement
causes the clock to go L to H to L. The 'c appears over the final L. This helps the user to identify the vector
corresponding to SETF or CLOCKF statement.

The basIc philosophy ot me slmuratlon languag~ I~ to mSlGl,l ~asr,or me oeslgner to aeSCflue '"" IUIIl,;lIUII III ••

natural way so that it is easy to comprehend the behavior of the design from the simulation specification. PALASM
simulation language is divided into two sections Directives and Structured Control. The simulation directives provide
commands to establish circuit inputs, clock waveforms, check for circuit outputs and capture time response waveforms
as desired by the user.

SETF
CLOCKF
CHECK
TRACE-QN
TRACE-QFF

<signal list>
<clock signals>
<signal list>
<signal list>

FOR 1;= <lower limit> TO <upper limit> DO
BEGIN <statements> END

WHILE <condition> DO
BEGIN <statements> END

IF <condition> THEN
BEGIN <statements> END

ELSE
BEGIN <statements> END

The structured control constructs are used to build up sequences of operations that repeat or are modified as a result
of particular logic values or conditions. They provide the basic looping and decision branching of structured high-level
programming languages. <condition> is a boolean expression or a mathematical equality. The condition is true if the
boolean expression is asserted or the mathematical equality is satisfied.

SETF <signal list>
Ex. SETF AlOE B IRESET 100 01 02

The signal is set high (H) if it is not preceded by otherwise it is set low (L). In the above example A B 0 and 0 are all set
to Hand OE, RESET, and 0 are all set to L.

The signal should only be set if a change iswanted from the previous value. The simulator always remembers the last
value of all the signals. At the start of simulation all signals are assumed to have don't care value (X).

Every time a SETF statement is executed, a vector is generated and all the equations that are effected are evaluated.
Any internally generated events are also detected and evaluated. Depending upon the activity, many more vectors can
be generated by a single SETF statement because of feedbacks and asynchronous events. The simulator continues
this till the system stabilizes, that is, until there are no more changes in the output signals or no events are generated. If
the system fails to stabilise after 1 iterations, then an oscillatory condition is detected and the simulation halts.

CLOCKF <list of clock signals>
Ex. CLOCKF CLK1 CLK2

The CLOCKF statement has the list of clock signals (dedicated clock pins) to which a clock pulse is to be applied. Only
the clock pins of the device can be used in the CLOCKF statement, any other pin is an illegal signal for CLOCKF
statement.

Each CLOCKF statement corresponds to a pulse going from low to high to low. Thus two vectors are generated in the
proccess and during the positive edge transition, the new value of the registers which are clocked is transfered to the
output. No action takes place for the registers that are not clocked.

At every CLOCKF statement, internally generated events and asynchronous events are detected and if present,
more vectors are generated. The operation of CLOCKF is similair to that of SETF statement except that it goes through
a pulse rather than a level.

CHECK <signal list>
EX. CHECK 0 10 10

This is a facility provided to the user to keep track of the simulation results. The signals in the check statement are the
output signals which the user wants to check. In the above example, the user wants to check if 0 is high and 0 and 0
are low. Again a signal without is to be checked high and the signal with is to be checked for low.

Whenever a CHECK statement is executed, the simulator compares the actual value and the expected value of a
particular signal. If they are equal then no action is taken. Otherwise, an error is reported and the simulator continues
assuming the actual value. The error is reported by . in the vector at the place of the error and also the vector number.
The history and trace files will contain the. at the particular location.

TRACE-QN <signal list>
Ex. TRACE-QN IOE SET RESET DO 01 02 03 100 101 102

This statement contains the list of signals which have to be listed in the trace file. The signals will be listed in the same
order and with the same polarity as present in the TRACE-ON statement. This list of signals will be active until the next
TRACE-QFF statement or untill the end of the simulation specification. New signals can be traced on after the
TRACE-QFF statement.

This statement helps the user to group the signals more naturally for debugging purposes. For example, all control
signals can be grouped together, then all the data signals can be grouped together, and then all the output signals can
be grouped together. This makes the observation of the results in the trace file very easy.

This statement traces off all the signals mentioned in the latest TRACE-QN statement. After this statement, no more
results are added to the trace file until the next TRACE-QN statement is executed. Thus all the results between the
current TRACE-OFF statement and the next TRACE-QN statement are not displayed in the trace file.

This feature helps to break up the results in different time frames which are critical for debugging purposes, rather
than having unwanted results. It should be remembered that the history file contains all the information from the start of
the simulation to the end of simulation. The signals are in the same order and of the same polarity as mentioned in the
pin list of the CHIP statement.

FOR <index var> := <lower limit> TO <upper limit> DO
BEGIN

<statements>

END
Ex. FOR J:= 3 to 8 DO BEGIN

SETF A IB CLOCKF elk
IF J= 5 THEN BEGIN CHECK 00 END
ELSE BEGIN CHECK 100 END

END

The FOR loop provides a repetitive execution of statements which is very powerful. Many statements can be
embedded in a FOR loop even another FOR statement with a different indexing variable. Using this statement one can
generate many vectors by just increasing the limits of the for loop.

The <lower limit> should be less than or equal to the upper limit. All the limit values should be greater than or equal
to zero. You can not use negative values for the limits. The loop is not executed if the conditions expressed in the limits
are equal.

IF <cond> THEN
BEGIN
<Statements>

END
ELSE

BEGIN
<Statements>

END

IF >cond< THEN
BEGIN
<Statements>

END

There are two variations of this statement. In the first usage, there is an ELSE clause and in the second usage there is
no ELSE clause. If the <condition> is true the THEN clause is exectuted otherwise the ELSE clause is executed. If
there is no ELSE clause, then the simulation executes the next statement after the IF statement. Condition expressions
can not contain nested parenthesis.

The <condition> can be any mathematical equality;
(=, >, <, >=, <=, <», for example:

In the first example the condition of I less than is checked and in the second example the expression (DRDY ICLR) is
evaluated and if it is true then the condition is true.

WHILE <condition> DO
BEGIN <statements> END

The WHILE loop provides a repetetive execution of statements which may be controled by evaluation of logic
conditions present within the PAL device. Many statements can be embedded in a WHILE loop including even other
looping constructs. The WHILE loop is used to ilterate a set of commands until the condition is false.

PAL® Device Introduction

PAL/HAL ® Device Specifications

PAL Device Applications

Logic Tutorial

PLE Circuit Specifications

PLE Circuit Applications

Article Reprints

Representatives/Distributors

PLE'· Circuit Introduction 6-1
Table of Contents for Section 6 6-2
An Introduction to Programmable Logic Elements 6-3

An Introduction to
Programmable Logic Elements

A logic function, whether combinatorial or sequential, may be
represented in Sum of Product (SOP) form by using DeMorgan's
law and Boolean Algebra. Any complex multi-level logic function
can easily be reduced to atwo-level AND-OR configuration. This
property of logic functions lends a very regular character,
making it possible to implement them inastructured methodical

way. The uniform AND-OR array-like architecture of Program-
mable Logic Devices was conceived for a clean and efficient
implementation of these functions, as shown in Figure 1.

Either or both of the arrays can be programmable, constituting
three distinct families of devices as shown in Figure 2.

I AND
• ARRAY

PI •. I7 ----
OR

ARRAY

PROGRAMMABLE
LOGIC ELEMENT

PROGRAMMABLE
LOGIC ARRAY

PROGRAMMABLE
ARRAY LOGIC

FIXED AND ARRAY
PROGRAMMABLE OR ARRAY

BOTH ARRAYS
PROGRAMMABLE

PROGRAMMABLE AND ARRAY
FIXED OR ARRAY

TWX: 910-338-2376 Monolithic m'1!n
2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374 Memories In.U'W

6·3

The array like structure of a PROM lends itself naturally to being
viewed as a two-level AND-QR logic circuit. The inputs to the
PROM are fully decoded into all possible combinations i n the fixed
AND plane. Each combination (product term) is fuse connected
to each output in the programmable OR plane.

For a PLE device, a product term is equivalent to an AND gate
equal in size to the number of inputs. Each output is equivalent to
an OR gate connected to all the AND gates. Programming a fuse

then implies breaking a connection between an AND gate and
OR gate.

Thus a PROM has a convenient structure for implementing
combinatorial logic when a large number of input combinations
are required, or a large number of product terms per output is
desired. Registered PROMs are ideally suited for implementing
complex sequential machines which contain a large number of
variables in the state equations.

A10 21

A9 22

A8 23 1 OF 128 128x128

A7 1 ROW PROGRAMMABLE
2 DECODER ARRAY

A6
AS

3

A4
4

5
A3
A2

6 1 OF 16
7 COLUMN

A1 DECODER
AO

8

E1
E2
E3

FIXED AND
PLANE

SIZE:" x 2"

PROGRAMMABLE
OR PLANE

SIZE: 2" x m

In terms of a Karnaugh map, each minterm in the map
corresponds to one product term in the PLE array. Two or more
adjacent minterms cannot be be combined to generate a prime
implicant, oreliminate a logic hazard. For example, the following
Karnaugh map will generate the function f = ab + ab. The
minimized function f = a as indicated by the dotted prime implicant
can not be implemented. The PLE device does not contain a
product term with fewer than all its inputs present.

The absence of prime implicants in a PLE array may cause logic

hazards which may be unavoidable in asynchronous control
systems. However these hazards are masked out in sychronous
control systems by the registers, and are largely irrelevant in data
path applications where only the final steady state results are
looked at. Indeed, most applications of PLE devices are in
synchronous control systems to replace random logic. In the
data paths, they are used to generate complex functions like ALU
operations, high-speed multiplication, Pseudo Random Number
sequences, Error Detection codes, etc.

X INDICATES
PROGRAMMABLE
FUSE CONNECTION

0 1

0 X [j)
I 1 f = aii + ab

1 0 '(5)
'\ I

PLAs have the most general architecture with both arrays pro-
grammable. For N inputs, M outputs, and P product terms in a
PLA, the AND array contains 2 x N x P programmable crosspoint
connections. All possible combinations of the inputs, taken to-
gether, or in groups, or even a single input, can have a product
term in the AND array. The inputs not desired in a product term
are disconnected, by removing the corresponding crosspoint
cOflnection. In field programmable PLAs, this corresponds to
electrically blowing a fusible link connection. These PLAs also
usually contain less product terms than the maximum possible
2n, to conserve chip area.

.......• " .•........ ~,•.....•... _ ,..._---- -_.
outputs, but may be disconnected by blowing that fuse connec-
tion. This architecture is used for implementing logic functions
with a large number of product terms of varying sizes, or a large
number of product terms per output.
Field-programmable PLAs are generally not very-high perfor-
mance. They are slower in speed compared to PAL and PLE
devices. A given signal must pass through two large program-
mable arrays, which increases the capacitance on the signal,
and increases the delay. For most appl ications, a large number
of crosspoints in one or another array are usually left intact,
making the architectural flexibility redundant.

(PROGRAMMABLE)

,
, 7 '" 7" 7

~ V V j\))

-=<=<=<=<=<
~
::::::
::::::

=<=<=<
::::(

=<=<=<
-/

'AND" ARRAY 9Y99

x = FUSIBLE
CROSSPOINT
CONNECTION

An Introduction to Programmable Logic Elements

PAL devices are the most useful and efficient of the fuse pro-
grammable logic family. First developed and patented by
Monolithic Memories in 1976. the PAL devices have become well
known for their friendliness in system configurations. The
programmable AND array and fixed OR array eliminate most of
the redundancies associated with PLAs. The PAL AND array is
logically identical to a PLA AND array, with the only difference
that PAL devices have fewer product terms. In the fixed OR
array, each product term is connected to only one output or OR

PAL
41N-4 OUT-16 PRODUCTS

gate, which eliminates product term sharing of PLAs. The PAL
device configuration has permitted several architectural innova-
tions, making the PAL circuit family of devices extremely useful
for implementing all kinds of logic functions. PAL device features
include outputs with/without registers that are internally fed
back to the AND array, special XOR gates in the OR array,
arithmetic carry generate gates in the feedback path in the AND
array, programmable I/O pins, and programmable output
polarity. New generation PAL devices also have the feature of
product term sharing where a product term can be attached to
one of two adjacent sum terms.

(FIXED)

" 7 , 7" 7 '" 7
V V \Ie IV

"""""=<=<
=<=<

P=<
P=<
P=<
F=<
P=<
F<
F=<
~
=<=<=<....,/

'AND" ARRAY YY9Y

An Introduction to Programmable Logic Elements

As the PAL AND array is programmable, logic functions can be
minimized and logic hazards removed, by combining adjacent
minterms in a Karnaugh map. This group of minterms or
implicants is implemented as a product term. Thus PAL device
outputs can be designed to be glitch-free, and ideal for imple-
menting control logic. Figure 10 illustrates the absence of
hazards and race conditions in a PAL device.

The limitation of PAL device is that they have a restricted number
of product terms per output, and fewer product terms in general.
Certain logic functions containing a large number of product
terms would require a large number of PAL devices to implement
them, which increases the propagation delay and the chip count.
For these applications, PLE devices are ideal.

ACTIVE HIGH
/ THREE-STATE ENABLE

CLOCK tPRODUCT (0
LINE :

NUMBER ,

An Introduction to Programmable Logic Elements

PLE and PAL Devices
PLE devices bridge the gap between the flexibility of PLAs, and
the product term restrictions in PAL devices. Those applications
for which PAL devices are not suitable, PLE devices take over.
Where a PAL device typically hasa large number of inputs, and a
small number of product terms, the PLE devices have a
restricted number of inputs and a large number of product
terms. Also. it has a large number of product terms per output
with full product term sharing. whereas PAL devices have a
restricted number of product terms per output with no product
term sharing. Thus PAL and PLE devices complement each
other both structurally and functionally.

The PLE circuit family of devices is an extension of Monolithic
Memories' TiW PROM family. The entire line of TiW PROMs
including the Registered parts are available in PLE circuit
configurations. High speed and diagnostic versions in military
and commercial temperature ranges are available.

PLE Device Features
• 2n product terms per output are available with n inputs each.

• Programmable output polarity.
• Programmable initialization in registered PLE devices.

• High-level functional specification of PLE systems in terms of
logic equations.

• Input-te-output delays comparable to discrete logic gates
(typically less than 15 ns).

• PNP inputs provide high impedance.

• Monolithic Memories' TiW fusible-link technology and ad-
vanced self-aligned washed-emltter bipolar process guaran-
tees a programming yield greater than 98%.

CAD Tool for PLE Designs
PLEASM software is a PLE Assembler written in FORTRAN 77
and available on most mini- and microcomputer systems. It
enables specifying PLE Circuit data in terms of logic equations
(like those in Figure 14),which areassembled into a fuse-pattern
format compatible with commercially available PROM pro-
grammers. PLEASM software also generates a truth table from
the logic equations which is later used as test vectors for logic
simulation and verification. PLEASM allows complete design
customization and documentation of PLE systems in a simple
high-level functional language.

Control Path Example
A common application of PLE devices in the control path of a
synchronous system, is to replace random logic, or customize
logic functions. An n-input exclusive OR function is quite

"O~:~ D--F
"3

"0."1
"2>"3 00 01 11 10

0000 0
010000

11 0 0 0 0
100 0 0 0

F = "00"10"20"3

= "oA1A2A3+AO"1A2A3

+ AOA1"2A3+ AoA1A2"3

+ "0"1 "2A3 +"0"1 A2"3

+ "oA1 "2"3 +Ao"1 "2"3

commonly required in comparator ana aaaercirculls. 11 contains
2n-1 product terms, which increases exponentially with n.
Therefore, it isvery efficient to implement large XORfunctions in
PLE devices. Figure 11 shows the implementation of a 4-input
XOR in a PLE circuit.

SECTION OF
PLE5PS/A

.•.......
---: .

1. :1.11. ~ 1. ~I1.~
T F UN

FUSE BLOWN

FUSE INT"CT

An Introduction to Programmable Logic Elements

Data Path Example
In the data path, a registered PLE device can be used to
implement complex functions, like a Pseudo Random Number
(PRN) Generator. RPN sequences are useful in encoding and
decoding of information in signal processing and communiciltion
systems. They are used for data encryption in secure commu-
nication links, and error detection and correction codes in data
communication systems. PRN sequences are also utilized as
test vectors for circuit simulation, as signal modulators in radar
range-finding systems, and as reference white noise in many

signal processing applications. Figure 12 illustrates a typical
mechanism for generating PRN sequences.

The advantage of using PLE devices for implementing PRN
sequences is that any polynomial can be quickly customized in it.
In data encryption systems where the code is frequently changed
for protection from unauthorized access, PLE devices can be
used to generate a new code each time, or several codes can be
implemented in the same device. An example of a PRN generator
implemented in a Registered PLE device is shown in Figure 13.

PLEASM
EQUATIONS:

SECTION OF
PLE11RA8

PRESENT STATE NEXT STATE
STATES 00 0, O2 02:= 0,

0,:= 00 0 0
so 0 0 00: = 0,@02 __ 0 0
s, 0 0 =0,02+0,02 0 ,

OUT S2 , 0 0 ,
53 , , , 0
S4 0 , , 0
S5 , 0 , ,
56 0 , , ,
so 0 0 INIT

OUT SEOUENCE: ClK
, 0' , 000
'--"

OUT

An Introduction to Programmable Logic Elements

Implementing a high-speed M-bit Parallel Cyclic Redundancy
Check (CRC) code in a registered PLE circuit is almost trivial.
Once the M-bit carry look-ahead equations are determined.
PLEA5M software is used to assemble these equations into a
fuse pattern for the Registered PLE device.

The speed of operation of parallel CRC implemented in regis-
terlld PLE devices will remain the same for any generator poly-
nomial and M. Increasing complexity of the carry look-ahead
equations only increases the number of devices required to
implement them. It does not decrease the speed of operation.

To illustrate with a practical example, Figure 14 shows the 8-bit
carry look-ahead equations for an 8-bit Parallel implementation
of the following generator polynomial:

G (X) = X16 + X12 + XS + 1

also called the CRC-CCITT standard. These equations are
derived in Application Note AN-12S. where an implementation in
four PAL devices is also shown with a maximum delay of 90 nsec.
Figure 16 shows an implementation in three 24-pin registered
PLE devices and one 551 part. The maximum delay is SOnsec.

XO (n + 1) := X8 (n) EllX12(n) Ell 0(3) Ell 0(7) chip1
X1 (n + 1) := X9 (n) Ell X13(n) Ell 0(2) Ell 0(6) chip2
X2 (n + 1) := X10(n) Ell X14(n) Ell 0(1) Ell O(S) chip3
X3 (n + 1):= X11(n) Ell X1S(n) Ell 0(0) Ell 0(4) chip3
X4 (n + 1) := X12(n) EIl'03 chip1
XS (n + 1) := X8 (n) Ell X12(n) Ell X13(n) Ell 0(2) Ell 0(3) Ell 0(7) chip1
X6 (n + 1) := X9 (n) Ell X13(n) Ell X14(n) Ell 0(1) Ell 0(2) Ell 0(6) chip2
X7 (n + 1) := X10(n) Ell X14(n) Ell X1S(n) Ell 0(0) Ell 0(1) Ell O(S) chip3
X8 (n + 1) := XO (n) EllX11 (n) Ell X1S(n) Ell 0(0) Ell 0(4) chip3
X9 (n + 1) := X1 (n) Ell X12(n) Ell 0(3) chip1
X10(n + 1) := X2 (n) Ell X13(n) Ell 0(2) chip2
X11(n + 1):= X3 (n) Ell X14(n) Ell 0(1) chip2
X12(n + 1) := X4 (n) EllX8 (n) Ell X12(n) Ell X1S(n) Ell 0(0) Ell 0(3) Ell 0(7) chip1
X13(n + 1) := XS (n) Ell X9 (n) Ell X13(n) Ell 0(2) Ell 0(6) chip2
X14(n + 1) := X6 (n) Ell X10(n) EllX14(n) Ell 0(1) Ell O(S) chip3
X1S(n + 1) := X7 (n) Ell X11 (n) Ell X1S(n) Ell 0(0) Ell 0(4) chip3

where Xi (n + 1) is the next state value of the corresponding
register i. i = 0, ...• 1S

Xi (n) is the present value of the corresponding
register i. i = O•... , is

o (n) is the parallel input data bits. where n = 0, ...• 7

Figure 14. Carry Look-Ahead Equations for 8-Bit Parallel CRC with G(X). The Equations
are Parltioned Into Three Parts for Efficient Implementation in Three Chips.

DO-D7~

INIT--

l5E'--

CLOCK

8-BIT PARALLEL
CRC

(CRC·CCITT)
3 PLE DEVICES

1 SSICHIP

VCC
Xs

A7 AS
X4

A6 AS
X12

AS Al0

Xl
A4 IS

~
A3 E
A2 2Kx8 ClK

X12X1S
A1 PLE11RA8 07~ AO 06

X4

Xo 05 ~ NC
Xs

00 04 ~,
01 CHIP 1 03

1

2L02
GND

VCC 14-A7 AS
A6 AS ~
AS Al0

X13
X14
Xs

A4 IS
X3 A3 E
X2 A2 2Kx8 ClK

X13
!:!f..- Al PLE11RA8 07 NC

AO 06 ~2
Xl 05 NC
Xs 00 04 ~
X10

01 CHIP2 03
02
GND

VCC
X1S

A7 AS
X14A6 AS
X7

AS A10

I
Xo

A4 IS
~

A3 E
A2 2Kx8 ClK X7X10
A1 PLE11RA8 07Xs X14
AO 06 Xi<'

~
05 Xs

00 CHIP 3
04

ERFLAG~ 01 03
X3 O2

GND

~ iNi'f

Figure 16. Diagram Showing How to Connect Three Registered PLE Devices to Implement8-Bit Parallel CRC. The
Error Flag Is Valid on the Next Clock Pulse After All the Data Has Been Clocked In.
Error Flag = Xo + X1 + X2 + X3 + X4 + Xs + X6 + X7 + X8 + Xg + X10 + X11 + X12 + X13 + X14 + X1S

PAL® Device Introduction

PAL/HAL® Device Specifications

PAL Device Applications

Logic Tutorial

PALASM® Software Syntax

PLETMCircuit Introduction

PLE Circuit Applications

Article Reprints

RepresentatlvWDistributors

PLE Circuit Specifications 7-1
Tables of Contents for Section 7•........•............... 7-2
PLE Device to PROM Cross Reference•........................ 7-3
Programmable Logic Element PLE Device Family•..............•... 7-4

PLE Device Selection Guide•.....•... 7-4
PLE Device Means Programmable Logic Element 7-5
Registered PLE Devices 7-5
PLEASM Software 7-£
PLE Logic Symbols•..•..........•.....•............... 7-7
PLE Family Specifications ...•......•..•............................•...... 7-9
PLE9R8 Specifications•......................... 7-11
PLE10R8. 11RA8. 11RS8 • . . • . . • 7-13
PLE Device Family Switching Test Load•..... 7-14

Definition of Waveforms•..•........•..•..... 7-14
Definition of Timing Diagram•................. 7-14

PLE Device Family Programming Instructions•..............•..... 7-15

PLE Device Family Block Diagrams
PLE5P8/A ...•.....•.............. 7-17
PLE8P4• 7-17
PLE8P8 ...•...........•..... 7-17
PLE9P4 "•..•..•..........................•..•..•........•..... 7-17
PLE9PB•..........................•................................ 7-18
PLE10P4•..•.....•.....•.....•..•.................•.............. 7-18
PLE10PB ...•................................•.......................... 7-18
PLE11P4 ...•..•..•........•..........................•..•.............. 7-18
PLE11 P8•.............•..........•.....•.............. 7-19
PLE12P4 ...•..•..•..•.....•..........................•...........•..... 7-19
PLE12PB ...•.....•.....•..........................•..•..•.............. 7-19
PLE9R8•.. 7-20
PLE10R8•.........•.................................. 7-20
PLE11 RA8 7-20
PLE11 RSB•....................... 7-20

PLE Device Programmer Reference Chart 7-21

Monolithic W Memories

TEMPERATURE PLE INPUTS OUTPUTS OUTPUT ARRAY PROM
IRANGE NUMBER TYPE SIZE NUMBER

PLE5P8C 5 8 Three-State 32x8 63S081

PLE5P8AC 5 8 Three-State 32x8 63S081A

PLE8P4C 8 4 Three-State 256x4 63S141A

PLE8P8C 8 8 Three-State 256x8 63S281A

PLE9P4C 9 4 Three-State 512x4 63S241A

PLE9P8C 9 8 Three-State 512x8 63S481A

PLE10P4C 10 4 Three-State 1024x4 63S441A

Commercial PLE10P8C 10 8 Three-State 1024x8 63S881A

PLE11P4C 11 4 Three-State 2048x4 63S841A

PLE11P8C 11 8 Three-State 2048x8 63S1681A

PLE12P4C 12 4 Three-State 4096x4 63S1641A

PLE12P8C 12 8 Three-State 4096x8 63S3281A

PLE9R8C 9 8 Register 512x8 63RA481A

PLE10R8C 10 8 Register 1024x8 63RS881A

PLE11RA8C 11 8 Register 2048x8 63RAl681A

PLE11RS8C 11 8 Register 2048x8 63RS1681A

PLE5P8M 5 8 Three-State 32x8 53S081

PLE8P4M 8 4 Three-State 256x4 53S141A

PLE8P8M 8 8 Three-State 256x8 53S281A

PLE9P4M 9 4 Three-State 512x4 53S241A

PLE9P8M 9 8 Three-State 512x8 53S481A

PLE10P4M 10 4 Three-State 1024x4 53S441A

Military PLE10P8M 10 8 Three-State 1024x8 53S881A

PLE11P4M 11 4 Three-State 2048x4 53S841A

PLE11P8M 11 8 Three-State 2048x8 53S1681A

PLE12P4M 12 4 Three-State 4096x4 53S1641A

PLE12P8M 12 8 Three-State 4096x4 53S3281A

PLE9R8M g 8 Register 512x8 53RA481A

PLE10R8M 10 8 Register 1024x8 53RS881A

PLE11RA8M 11 8 Register 2048x8 53RAl681A

PLE11RS8M 11 8 Register 2048x8 53RS1681A

• Programmable replacement for conventional TTL logic

• Reduces IC inventories and simplifies their control

• Expedites and simplifies prototyping and board layout

• Saves space with 0.3 inch SKINNYDIP® packages
• Programmed on standard PROM programmers
• Test and simulation made simple with PLEASM software

• Low-current PNP inputs

• Three-state outputs
• Reliable TiW fuses guarantee >98% programming yield

PROGRAMMABLE
LOGIC
ELEMENT
NUMBER OF INPUTS
OUTPUT TYPE

P :: Non registered
R = Registered

RA = Registered
asynchronous
enable

RS = Registered
synchronous
enable

NUMBER OF OUTPUTS
PERFORMANCE

Blank = Standard
A = Enhanced

PLESP8 A C N SHRP

[

OPTIONAL PROCESSING
SHRP = Reliability

Enhanced
883B = MII-Std-883

Method 5004
and 5005
Level B

PACKAGE
N = Plastic dip

NS = SKINNYDIP plasllc
J = Ceramic dip

JS = SKINNYOIP ceramic
F = Flat Pack
L = Leadless chip carrier

NL = Plastic leaded chip
carrier

W = Cerpak
L------"TEMPERATURERANGE

C=O°Cto+75°C
M = -55°C to + 125°C

PART INPUTS OUTPUTS PRODUCT OUTPUT tpD(ns)
NUMBER TERMS REGISTERS MAX*

PLE5P8 5 8 32 25
PLE5P8A 5 8 32 15
PLE8P4 8 4 256 30
PLE8P8 8 8 256 28
PLE9P4 9 4 512 35
PLE9P8 9 8 512 30
PLE10P4 10 4 1024 35
PLE10P8 10 8 1024 35
PLE11P4 11 4 2048 35
PLE11P8 11 8 2048 35
PLE12P4 12 4 4096 35
PLE12P8 12 8 4096 40
PLE9R8 9 8 512 8 15
PLE10R8 10 8 1024 8 15
PLE11RA8 11 8 2048 8 15
PLE11RS8 11 8 2048 8 15

* Clock to output time for registered outputs.

Note: Commercial limits specified.

SKINNYDIP@> is a registered trademark of Monolithic Memories.

PLE'·, PLEASM'· and Idea Logic'· are lrademarks of Monolithic Memories. TWX: 910-338-2376

2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

7-4

MOnOllih/em
Memories

PLE Device Means Programmable
Logic Element
JOining the world of IdeaLogic'· is a new generation of high-
speed PROMs which the designer can use as logic elements.
The combination of PLE devices with PAL devices can greatly
enhance system speed while providing almost unlimited design
freedom.

Basically, a PLE circuit is ideal when a large number of product
terms is required; on the other hand, a PAL circuit is best suited
for situations when many inputs are needed.

The PLE circuit transfer function is the familiar OR of products.
Like PAL circuits, a PLE circuit has a single array of fusible links.
Unlike PAL circuits, PLE circuits have a programmable OR array
driven bya fixed AND array (a PAL device is a programmed AND
array driving a fixed OR array).

Product Terms

Input Lines

PLE
32 to 4096

5 to 12

PAL

1 to 16

6to 64

The PLE device family features common electrical parameters
and programming algorithms, low-eurrent PNP inputs, full
Schottky clamping and three-state outputs.

The entire PLE device family is programmed on conventional
PROM programmers with the appropriate personality cards and
socket adapters.

Registered PLE Devices
The registered PLE devices have on-chip "D" type registers,
versatile output enable control through synchronous and
asynchronous enable inputs and flexible start-up sequencing
through programmable initialization.

Data is transferred into the output registers on the rising edge of
the clock. Provided that the asynchronous (E) and synchronous
(ES) enables are Low, the data will appear at the outputs. Prior to
the positive clock edge, register data are not affected by changes
in addressing or synchronous enable inputs.

Data control is made flexible with synchronous and asynchro-
nous enable inputs. Outputs may be set to the high-impedance
state at any time by setting Eto a High or if ES is High when the
rising clock edge occurs. When VCC power is first applied the
synchronous enable flip-flop will be in the set condition causing
the outputs to be in the high-impedance state.

A flexible initialization feature allows start-up and time-out
sequencing with 1:16 programmable words to be loaded into the
output registers. With the synchronous INITALIZE (IS) pin Low,
one of the 16 initialize words, addressed through pins5, 6, 7 and
8 will be set in the output registers independent of all other input
pins. The unprogrammed state of is words are Low, presenting
a CLEAR with is pin Low. With all is column words (A3-AO)
programmed to the same pattern, the is function will be inde-
pendent of both row and column addressing and may be used as
a single pin control. With all is words programmed High a
PRESET function is performed.

PLE9R8 has asynchronous PRESET and CLEAR functions.
With the chip enabled, a Low on the PR input will cause all
outputs to be set to the High state. When the CLR input is set
Low the output registers are reset and all outputs will be set to
the Low state. The PR and CLR functions are common to all
output registers and independent of all other data input states.

AND OR OUTPUT OPTIONS

PLE Fixed Prog
TS, Registered Outputs,

Fusible Polarity

FPLA Prog Prog TS, OC, Fusible Polarity

FPGA Prog Prog TS, OC, Fusible Polarity

FPLS Prog Prog TS, Registered Feedback I/O

PAL Prog Fixed
TS, Registered Feedback I/O

Fusible Polarity

PLE Device Family

PLEASM Software
Software that makes programmable logic easy.

Monolithic Memories has developed a software tool to assist in
designing and programming PROMs as PLE devices. This
package called "PLEASM" software (PLEAssembler) isavailable
for severalcomputers including the VAXNMSand IBM PC/DOS.
PLEASM software converts design equations (Boolean and

, ,
7 ~ 7 ~ "OR" ARRAY

V V V V (PROGRAMMABLE)

~=<
~
=:
=:
=:
:::::::
:::::::
:::::::
:::::::

=:
=:
=:
=<=<=<1...../

"AND" ARRAY \(V\(V
FIXED

arithmetic) into truth tables and formats compatible with PROM
programmers. A simulator isalso provided to test a design using
a Function Table before actually programming the PLE chip.

PLEASM software may be requested through the Monolithic
Memories IdeaLogic Exchange.

INPUTS

12 11

7 ' 7 , 7 "OR" ARRAY

V V V V FIXED

•........
~
~
~
==::
=:
:::::::

~
:::::::

~
~
~
=:
=:
=:
:::::::
~

"AND" ARRAY \(VVV(PROGRAMMABLE)

Note: • = Hardwired connection

X = Programmable fuse with a diode

Operating Programming
Supply voltage vee -0.5 V to 7 V 12 V
Input voltage -1.5 V to 7 V 7 V
Off-state output voltage -0.5 V to 5.5 V•..........• 12 V
Storage temperature -65· to +1500e

COMMERCIAL MILITARY
SYMBOL PARAMETER MIN TYP* MAX MIN TYP* MAX UNIT

Vee Supply voltage 4.75 5 5.25 4.5 5 5.5 V

TA Operating free-air temperature 0 25 75 -55 25 125 ·e

SYMBOL PARAMETER TEST CONDITION MIN TYPt MAX UNIT

VIL Low-level input voltage Guaranteed input logical low voltage for all inputs·· 0.8 V

VIH High-level input voltage Guaranteed input logical high voltage for all inputs·· 2.0 V

-0.8 -1.5
Vie Input clamp voltage Vee = MIN II = -18 mA V

9R8,10R8,llRNRS -1.2

IlL Low-level input current Vee = MAX VI = 0.4 V -0.02 -0.25 mA

IIH High-level input current Vec = MAX VI = Vee 40 /loA

Com 0.3 45

VOL Low-level output voltage VCC = MIN 10L = 16mA l1P8,12P8,9R8, V

10R8,11RNRS8,Mii
0.3 0.5

VOH High-level output voltage VCC = MIN
Com IOH = -3.2 mA

2.4 2.9 V
Mil IOH = -2 mA

IOZL Va = 0.4 V -40
Off-state output current VCC = MAX

40
/loA

10ZH Va = 2.4 V

10S Output short-circuit current· VCC = 5 V Va = 0 V -20 -50 -90 mA

5P8 90 125

5P8A 90 125

8PA 80 130

8P8 90 140

9P4 90 130

9P8 104 155

VCC = MAX 10P4 95 140

ICC Supply current All inputs TTL; 10P8 92 170 mA

all outputs open l1P4 110 150

l1P8 135 185

12P4 130 175

12P8 150 190

9R8 130 180

10R8 130 180

llRA8 140 185

llRS8 140 185

Vertical at 5.0 V VCC and 25° eTA.
* Not more than one output should be shorted at a time and duration of the short cirCUit should not exceed one second.

* * VIL and VIM limits are absolute with respect to the device ground pin(s) and include all overshoots due to test equipment noise.

IpZX AND IpXZ (ns)
IpD (ns) INPUT TO OUTPUT

DEVICE TYPE PROPAGATION DELAY ENABLE/DISABLE TIME
MAX MAX

5P8M 35 30
8P4M 40 30

,
8P8M 40 30
9P4M 45 30
9P8M 40 30
10P4M 50 30
10P8M 45 ,,"'. 30 ~
11P4M . 50 30
11P8M " 50 30
12P4M 50 t 30
12P8M 50 35

IpZX AND IpXZ (ns)
IpD (ns) INPUT TO OUTPUT

DEVICE TYPE PROPAGATION DELAY ENABLE/DISABLE TIME
MAX MAX

5P8AC 15 20
5P8C 25 20
8P4C 30 20
8P8C 28 25
9P4C 35 20
9P8C 30 25, 10P4C 35 25
10P8C 35 25
11P4C 35 25
11P8C 35 25
12P4C 35 25
12P8C 40 30

COMMERCIAL MILITARY
SYMBOL PARAMETER MIN TYP* MAX MIN TYP* MAX UNIT

tw Width of clock (High or low) 20 10 20 10 ns

tprw Width of preset or clear 20 10 20 10 ns
tclrw

(low) to Output (High or low)

tprr Recovery from preset or clear 20 11 25 11 ns
tclrr

(low) to clock High

tsu Setup time from input to clock 30 22 35 22 ns

ts(ES) Setup time from ES to clock 10 7 15 7 ns

th Hold time from input to clock 0 -5 0 -5 ns

th (ES) Hold time from ES to clock 5 -3 5 -3 ns

COMMERCIAL MILITARY
SYMBOL PARAMETER MIN TYP* MAX MIN TYP* MAX UNIT

tClK Clock to output delay 11 15 11 20 ns

tpR Preset to output delay 15 25 15 25 ns

tClR Clear to output delay 18 25 18 35 ns

tpzx (ClK) Clock to output enable time 14 25 14 30 ns

tpxz (ClK) Clock to output disable time 14 25 14 30 ns

tpzx Input to output enable time 10 20 10 25 ns

tpxz Input to output disable time 10 20 10 25 ns

Input ~r"t'1 _
F}/¥

I
I

NOTES: 1. Input pulse amplitude 0 V to 3.0 v.

2. Input rise and fall times 2-5 ns from 0.8 V to 2.0 V.

3. Input access measured at the 1.5 V level.

4. Switch 8, is closed. CL = 30 pF and outputs measured at 1.5 V level for all tests except tpxz and tpZX.

5. tpzx and tpZX(CLK) are measured at the 1.5 V output level with CL = 30 pF. 51 is open for high impedance to "'" test and closed for
high impedance to "0" test.

tpxz and tpXZ{CLK) are tested with CL = 5 pF. 5, is open for "'" to high impedance test. measured at VOH-O.5 V output level;
5, is closed for "0" to high impedance test measured at VOL +0.5 V output level.

COMMERCIAL MILITARY
SYMBOL PARAMETER MIN TYP* MAX MIN TYP* MAX UNIT

tw Width of clock (High or Low) 20 10 20 10 ns

tsu Setup time from input to clock (10R8) 30 25 40 25 ns

tsu Setup time from input to clock (11RA8. 11RS8) 35 28 40 28 ns

ts (ES) Setup time from ES to clock 15 7 15 7 ns

ts (IS) Setup time from IS to clock 25 20 30 20 ns

th Hold time input to clock 0 -5 0 -5 ns

th (ES) Hold time (ES) 5 -3 5 -3 ns

th (IS) Hold time (IS) 0 -5 0 -5 ns

SYMBOL
COMMERCIAL MILITARY

PARAMETER MIN TYP* MAX MIN TYP* MAX UNIT

tCLK Clock to output delay 10 15 10 20 ns

tpzx (CLK) Clock to output enable time 17 25 17 30 ns

tpxz (CLK) Clock to output disable time 17 ·25 17 30 ns

tpzx Input to output enable time 17 25 17 30 ns

tpxz Input to output disable time 17 25 17 30 ns

Input :-_"'_-tf-~u-:-~*-------
ES __ /.l-=--J~~I ~"7

j-""" "",H I I

I I

_lwJ
I-tpxz-I 1-IPzx-1

-YOH - O.5V

-VOL'" O.SY

NOTES; 1. Input pulse amplitude 0 Vla 3.0 V.

2. Input rise and fall times 2-5 ns from 0.8 V to 2.0 V.
3. Input access measured at the 1.5 V level.

4. Switch S, is closed. CL = 30 pF and outputs measured at 1.5 V level for all tests except tpzx and tpXZ.
5. tpzx and tPZXCCLKI are measured at the 1.5 Voutpul level with CL = 30 pF. 5, 1$ open for high impedance to T' test and closed for

hIgh Impedance to "0" test.

tpxz and IPXZ(CLK) are tested With CL = 5 pF. 5, IS open for "1" to high Impedance test, measured at VOH-O 5 Voutpullevel;
5, IS closed tor "0" to hIgh Impedance test measured at VOL +0.5 V outpullevel.

Vcc

)51:r1
R

1

OUTPUT

CL R2

~ -=-

NOTES: Apply to electrical and switching characteristics

Typical at 5.0 V VCC and 25· C Tk

Measurements are absolute voltages with respect to the ground pin on the device and includes all overshoots due to system and/or tester noise.
In all PLE devices unused inputs must be tied to either ground orVCC' The series resistor required for unused inputs on standard TTL is NOT required for
PLE devices, thus using less parts.

-Not more than on output should be shorted at a time and duration of the short-circuit should not exceed one second.

1. For commercial operating range R1 = 2000, R2 = 3900. For military operating range R1 = 300fl, R2 = GOOn.

2. Input pulse amplitude 0 V to 3.0 V.

3. Input rise and fall times 2-5 ns from 0.8 to 2.0 V.

4. Input access measured at.the 1.5 V level.

5. Data delay is tested with switch 81 closed. CL = 30 pF and measured at 1.5 V output level.

6. tpzx is measured at the 1.5 V output level with CL = 30 pF. 51 is open for high-impedance to "1" test and closed for high-impedance to "0" test.
tpxz is measured CL = 5 pF. 51 is open for "1" to high-impedance test. measured at VOH-0.5 V output level; 51 is closed for "0" to high-Impedance
test measured at VOL + 0.5 V output level.

PLETMDevice Family
Programming Instructions

Device Description
All of the members of the PLE device family are manufactured
with all outputs LOW in all storage locations. To produce a HIGH
as a particular word, a Titanium-Tungsten Fusible-Link must be
changed from a low resistance to a high resistance. This
procedure is called programming.

Programming Description
To program a particular bit normal TTL levels are applied to all
inputs. Programming occurs when:

1. VCC is raised to an elevated level.
2. The output to be programmed is raised to an elevated level.
3. The device is enabled.

In order to avoid misprogramming the PLE device only one
output at a time is to be programmed. Outputs not being
programmed should be connected to VCC via 5 KO resistors.

Unless specified, Inputs should be at VIL.

Programming Sequence
The sequence of programming conditions is critical and must
occur in the following order:

1. Select the appropriate address with chip disabled
2. Increase VCC to programming voltage
3. Increase appropriate output voltage to programming voltage
4. Enable chip for programming pulse width
5. Decrease VOUT and VCC to normal levels

Programming Timing
In order to insure the proper sequence, a delay of 100 ns or
greater must be allowed between steps. The enabling pulse
must not occur less than 100 ns after the output voltage reaches
programming level. The rise time of the voltage on VCCand the
output must be between 1 and 10 V/J.Ls.

Verification
After each programming pulse verification of the programmed
bit should be made with both low and high Vcc. The loading of
the output is not critical and any loading within the DC specifica-
tions of the part is satisfactory.

Additional Pulses
Up to 10 programming pulses should be applied until verifica-
tion indicates that the bit has programmed. Following verifica-
tion, apply five additional programming pulses to the bit being
programmed.

SYMBOL PARAMETER
RECOMMENDED

MIN VALUE MAX UNIT

VCCP Required VCC for programming 11.5 11.75 12.0 V

VOP Required output voltage for programming 10.5 11.0 11.5 V

tR Rise time of VCC or VOUT 1.0 5.0 10.0 V/J.LS

ICCp Current limit of Vccp supply 800 1200 mA

lOp Current limit of VOP supply 15 20 mA

tpw Programming pulse width (enabled) 9 10 11 J.LS

VCC Low VCC for verification 4.2 4.3 4.4 V

VCC High VCC for verification 5.8 6.0 6.2 V

MDC Maximum duty cycle of Vccp 25 25 %

tD Delay time between programming steps 100 120 ns

VIL Input low level 0 0 0.5 V

VIH Input high level 2.4 3.0 5.5 V

VV','L'iADDRESS _.

Vccp
vcc

Vccv
r

~ I I
'If I I I

I I I

~-I
I-

f-TD-+-TD-1I_TD-+-lpw-~

Monolithic Memories' PlE devices are designed and tested to
give a programming yield greater than 98%. If your programming
yield is lower, check your programmer. It may not be properly
calibrated.

routine, ideally under the actual conditions of use. Each time a
new board or a new programming module is inserted, the
whole system should be checked. Both timing and voltages
must meet published specifications for the device.

Remember - The best PlE devices available can be made
unreliable by improper programming techniques.

Programming is final manufacturing - it must be quality-
controlled. Equipment must be calibrated as a regular

PROGRAMMERS
Data I/O Corp.
10525 Willows Rd. N.E.
Redmond, WA 98073-9746
(800) 426-1045

Kontron Electronics, Inc.

01ge7e'clnc::~
586 Weddell Dr.
Suite 1,
Sunnyvale, CA 94089
(408) 745-0722

Stag Microsystems Inc.
528-5 Weddell Dr.
Sunnyvale, CA 94089
(408) 745-1991

Varix Corp.
1?1n ~ r.~mnhpll ~rt Nn 1()()

SOFTWARE
PlEASM
Monolithic Memories
Idea logic Exchange
2175 Mission College Blvd. M/S 09-07
Santa Clara, CA 95054
(408) 970-9700 x. 6085

Redmond, WA 98073-9746
(800) 426-1045

CUPl
Assisted Technology
2381 Zanker Rd. No. 150
San Jose. CA 95131
(408) 942-8787

10
AO
AlII
A2 12

13
A3
A4 14

32 x S
PROGRAMMABLE

ARRAY

A71S

A61

AS 2

A43

A34

10F32
ROW

DECODER

32X32
PROGRAMMABLE

ARRAY

1 2 3

01 02 03

6 7

06 07

A2 7

Al 6

AO 5

1 OF S
COLUMN
DECODER

19 AS14A7
IS 32 X 64 A71S

A6 1 OF 32 10F32 32 X 64
17 PROGRAMMABLE A6 1 ROWAS ROW PROGRAMMABLE
2 DECODER

ARRAY AS 2 DECODER ARRAY
Al

A431
AO

5
A4 10FS4 A3A3 COLUMN
A2

3 DECODER A2 7 1 OF 16

Al 6
COLUMN
DECODER

E1 15 5
E2 16 AO

11 12 13 14 _ 13
E

01 02 03 04 05 06 07 OS

A34

A27 10F16

6 COLUMN
A1 DECODER

AD 5

6 7 8 9 11 12 13 14 8
~ 10

01 02 03 04 05 06 07 08 E2

PLE10PS PLE11P4

22
A915AS

23
AS A816

1 1 OF 64 64 x 128A7 A717 1 OF 64 64 X 128

A6
2 ROW PROGRAMMABLE

A6 1 ROW PROGRAMMABLE
3 DECODER ARRAY

A5 2
DECODER ARRAY

A5
A4 4 A4 3

5
A3

6A2 10F16
7 COLUMN A1D

A1 DECODER8 A3AD 10F32

E1
21 A2 COLUMN

E2 20 A1
DECODER

E3
19
18 AD

E4

9 10 11 13 14 15 16 17
01 02 03 04 05 06 07 08 E1 10

A8 19
A7 18
A6 17
A5 16

A1 2
AD 1

10F64
ROW

DECODER

64x64
PROGRAMMABLE

ARRAY

10F8
COLUMN
DECODER

A915

A816

A717

A61

A52

A43

1 OF 64
ROW

DECODER

64X64
PROGRAMMABLE

ARRAY

PLE11P8

A10 21
A11 17

A9 22
A1018

A8 23 1 OF 128 128.128 A919
1 OF 128

A7 1 ROW PROGRAMMABLE A8 1 ROW
2 DECODER ARRAY A7 2 DECODERA6

A6 ~A5
3

A4 4 A5

A3
5

A2
6 1 OF 16 A4
7 COLUMN

A1 DECODER A3 10F328
AO

A2 COLUMN
DECODER

E1 20 A1

E2
19

AO
E3 18

_15
9 10 11 13 14 15 16 17 ~16

01 02 03 04 05 06 07 06 E2

128 X 128
PROGRAMMABLE

ARRAY

A11 19
A10 21

A9 22
A8 23

A7 1
A6 2
A5 3

A4 4
A3 5
A2 6
A1 7

128x 256
PROGRAMMABLE

ARRAY

10 11 13 14 15 16 17

01 02 03 04 05 06 07 08

23 A9
A8 A8
A7 1 10F32 32 X 128 64 X 128

A7 10F64
A6

2 ROW PROGRAMMABLE ROW PROGRAMMABLE
3 DECODER ARRAY A6

DECODER ARRAYAS
A4

4

A3 5

A2 6 1 OF 16

A1 7 COLUMN A3
8 DECODER A2

AD A1
AD

PR
ClK lI-BIT EDGE· TRIGGERED

ClR REGISTER ES

E

9 10 11 13 14 15 16
01 02 03 04 05 06 07 08

PLE11RA8 PLE11RS8

A1D A1D
A9 A9
A8 10F128 128.128 A8 1 OF 128 128 X 128
A7 ROW PROGRAMMABLE A7 ROW PROGRAMMABLE

ARRAY A6 DECODER ARRAY

A3
A2
A1
AD

ClK
18

E 19

Source and Data 1/0 Kontron Electronics Stag Microsystems Digelec Varix - Suite 100
Location 10525 Willow Rd. N.E. 630 Price Ave. 528 Weddell Dr., Suite 1 586-1 Weddell Dr. 1210 E. Campbell Rd.

Redmond, WA 98073 Redwood City, CA 94063 Sunnyvale, CA 94089 Sunnyvale, CA 94089 Richardson, TX 75081

Programmer Model 19/29 Model MPP-80S Model PPX UP803 OMNI
Model(s) Model 22 Model PP17

MMI UniPak Rev 08 MOD4 FAM Mod. No.12
Generic Bipolar UniPak II Rev 05
PROM (Not all PLEs are
Personality supported by earlier
Module UniPak revisions)

Socket Adapter(s)
and Device Code

PLE5P81 F18 P02 SA3 AM110-2 DA NO.2 Pinout 1A 63S081
PLE5P8A Model 22A- Code 21 Switch 0-6

Adapter 351A-064

PLE8P4 F18 P01 SM-2 AM130-2 DA NO.2 Pinout 1B 63S141
Model 22A- Code 21 Switch 0-6
Adapter 351A-064

PLE9P4 F18 P03 SA4-1 AM130-3 DA NO.1 Pinout 1D 63S241
Model 22A- Code 21 Switch 2-14
Adapter 351A-064

PLE8P8 F18 P08

PLE10P4 F18 P05 SM AM140-2 DA No.3 Pinout 1E 63S441
Model 22A- Code 21 Switch 0-6
Adapter 351A-064

PLE9P8 F18 P09

PLE9R8 F18 P65t SA31-2 t Pinout 1Ht t
Model 22A- Switch 5-14
Adapter 351A-074

PLE10P8 F18 P16 MFR29
CODE 32
Model PPZ

PLE11P4 F18 P06 SM-4 AM140-3 DANo. Pinout 1L 63S841
Model 22A- Code 21 Switch 5-14
Adapter 351A-064

PLE10R8 F18 P86t t DA No. 64t t
Model 22A- Switch 0-12
Adapter 351A-074
(300 mil pkg)

PLE12P4 F18 P53 SA20 AM120-6 DA No. 70t 63S1641
Model 22A- Code 21 Switch 4-12
Adapter 351A-064

PLE11RA8 F18 PA3 t t t t
PLE11RS8

PLE11P8 F18 P21 SA5-4 AM100-5 t 63S1681
Code 21

PLE12P8 F18 P63 t t DA No. 64 Pinout 47 t
Switch 0-4

PAL® Device Introduction

PAL/HAL ® Device Specifications

PAL Device Applications

Logic Tutorial

PALASM® Software Syntax

PLE™Circuit Introduction

PLE Circuit Applications 8-1
Table of Contents for Section 8•......................... 8-2

Random Logic Replacement
Basic Gates 8-3
Memory Address Decoder•..•....... 8-6
6-Bit True/Complement and Clear/Set Logic Functions•...... 8-10
Expandable 3-to-8 Demultiplexer•..•... 8-12
Dual 2:1 Multiplexer 8-14
Quad 2:1 Multiplexer with Polarity Control•............ 8-15
Hexadecimal to Seven Segment Decoder•............ 8-17
5-Bit Binary to BCD Converter•.•............ 8-20
4-Bit BCD to Gray Code Converter 8-22
4-Bit Gray Code to BCD Converter•........ 8-23
8-Bit Priority Encoder ..•........... 8-24
4-Bit Magnitude Comparator .. • 8-26
6-Bit Magnitude Comparator•..•........ 8-27
4-Bit Magnitude Comparator with Polarity Control 8-28
8-Bit Barrel Shiller•..........•........ 8-30
4-Bit Right Shiller with Programmable Output Polarity 8-33
8-Bit Two's Complement Conversion 8-36
A portion of Timing Generator for PAL Array Programming•........ 8-38
Timing Generator for PAL Security Fuse Programming•..... 8-41

Fast Arithmetic Look-up .. 8-44
4-Bit Multiplier Look-up Table•..•.......... 8-45
ARC Tangent Look-up Table•...........•..•.... 8-46
Hypotenuse of a Right Triangle Look-up Table 8-48
Perimeter of a Circle Look-up Table•....... 8-51
Period of Oscillation for a Mathematical Pendulum Look-up Table•....... 8-54
Arithmetic Logic Unit ..•..•.... 8-57

Wallace Tree Compression•.....•..•.... 8-58
Seven 1-Bit Integer Row Partial Products Adder•...........•.... 8-60
Five 2-Bit Integer Row Partial Products Adder 8-61
Four 3-Bit Integer Row Partial Products Adder•..•.......... 8-62
Three 4-Bit Integer Row Partial Products Adder 8-63
Residue Arithmetic Using PLE Devices•.... 8-64
Distributed Arithmetic Using PLE Devices 8-70
Registered PLE Devices in Pipelined Arithmetic 8-72

Random Logic Replacement

Random Logic Replacement
PROMs, as logic elements, have been providing solutions as
replacements of random logic. This is the concept of PROM as a
Programmable Logic Element (PLE) device.

The usages of PLE devices include simple multiplexer/demulti-
plexer/encoder/decoder, control signal generators, data com-
munications support like CRC, and arithmetic elements like
ALUs, multipliers, sine and inverse look-up tables, and applica-
tions in signal processing.

The advantages of PLE devices over SSI/MSI logic devices are
the flexibility of design and the fast turnaround time which non-
programmable devices cannot offer. For example, if a decoder is
used to select between memory pages and I/O ports, once a
design is done, it will be fixed - it not easy to find a part to be put
just in the same place without modification of PC board layout in
case the designer wants to expand the memory or to increase the
I/O. For a PLE device, what is needed is to program another PLE
device and place it in the same socket where the old part was
placed. In addition, it can allow designers to define their logic
functions in a component.

The AND-OR planar structure ofthe PLE circuit array lends itself
naturally to being viewed as a two-level logic circuit. The fixed
AND plane contains all possible combinations of the literals of
its inputs. Each combination (product term) is fuse-connected
to each output in the programmable OR plane.

A common PLE device application in the control path is to
customize logic functions. An n input exclusive OR function is
quite commonly required in comparator and adder circuits. It
contains 2n - 1 product terms, which becomes quite large for
large values of n. Therefore, it is very convenient to implement
large XOR functions in PLE devices.

The PLE logic circuit implementation of a 4-input XOR is shown
below.

cd

ob 00 01 11 10

00 0 1 0 1

01 1 0 1 0

11 0 1 0 1

10 1 0 1 0

Although it seems that XOR functions may be replaced by SSls,
in most applications, the XOR functions will not be alone by
themselves, PLE circuits can provide the flexibility of adding in
additional functions without using additional packages.

In the data path, a PLE device can be used to implement complex
functions such as a Pseudo Random Number (PRN) Generator.
Random number sequences are useful in encoding and
decoding of information in signal processing and communica-
tions systems. They are used for data encryption, image
quantization, waveform synchronization, and white nOise gen-
eration, etc.

There are many techniques for generating PRN sequences. The
most common technique, however, is to use 'n' stages of linear
shift registers with feedback through a logic function. The
function f is an arbitrary function chosen for a specific applic-
ation. A most general linear function is an 'm' input XOR (m:s n).

SERIAL
DATA

IN

There are a number of examples in the following session which
shows how a PLE device can be used to replace SSI/MSI logic
devices using PLEASM software.

TWX: 910-338-2376
2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

MonolIthIc ~~n
•••emorles InJl1JJ

8·3

Random Logic

PLE5P8
P5000
BASIC GATES
MMI SANTA CLARA, CALIFORNIA
.ADD 10 II 12 13 14
.DAT 01 02 03 04 05 06 07 08

PLE CIRCUIT DESIGN SPECIFICATION
VINCENT COLI 10/03/83

02 /10 INVERTER 10----;:>0-- 02

"}D-03 10 * Il * 12 * 13 * 14 AND GATE 11
12 03
13
14

10~04 10 + Il + 12 + 13 + 14 OR GATE 11
12 04
13
14

10}D-05 /10 +/Il + /12 + /13 + /14 NAND GATE 11
12 05
13
14

10~06 = /10 * /Il * /12 * /13 * /14 NOR GATE 11
12 06
13
14

10~07 10 :+: II :+: 12 :+: 13 :+: 14 EXCLUSIVE OR GATE 11
12 0--07

13
14

10~1108 10 :*: Il :*: 12 :*: 13 :*: 14 EXCLUSIVE NOR GATE 12 D----08

13
14

BASIC GATES (cont'd)

FUNCTION TABLE

1INPUT OUTPUTS FROM BASIC GATES
101234 BUF INV AND OR NAND NOR XOR XNOR COMMENTS

LLLLL
HHHHH
HLHLH
LHLHL

L L
H H
L H
L H

ALL ZEROS
ALL ONES
ODD CHECKERBOARD
EVEN CHECKERBOARD

THIS EXAMPLE ILLUSTRATES THE USE OF PLE DEVICES TO IMPLEMENT THE
BASIC GATES: BUFFER, INVERTER, AND GATE, OR GATE, NAND GATE, NOR
GATE, EXCLUSIVE OR GATE, AND EXCLUSIVE NOR GATE.

NOTE ALSO THAT THREE-STATE OUTPUTS ARE PROVIDED WITH ONE ACTIVE LOW
OUTPUT ENABLE CONTROL (/E).

PLEASM SOFTWARE GENERATES THE PROM TRUTH TABLE FROM THE LOGIC
EQUATIONS AND SIMULATES THE FUNCTION TABLE IN THE LOGIC EQUATIONS.

BASIC
GATES

PLE5P8

i:'uc,ot'o
P5001
MEMORY ADDRESS DECODER
MMI SANTA CLARA, CALIFORNIA
.ADD All A12 A13 A14 A15 /MREQ
•DAT /CE1 /CE2 /CE3 /CE4 /CE5 /CE6 /CE7 /CE8

CE1 /A11*/A12*/A13*/A14*/Al5* MREQ

CE2 A11*/Al2*/Al3*/Al4*/Al5* MREQ

CE3 /Al1* A12*/A13*/Al4*/Al5* MREQ

CE4 All* A12*/Al3*/Al4*/Al5* MREQ

CE~ /All*/A12* A13*/Al4*/Al5* MREQ

CE6 All */A12 * A13* /Al4 */Al5* MREQ

CE7 /All* A12* A13*/A14*/Al5* MREQ

CE8 All* A12* A13*/A14*/Al5* MREQ

SELECTS ADDRESS RANGE OK-2K

SELECTS ADDRESS RANGE 2K-4K

SELECTS ADDRESS RANGE 4K-6K

SELECTS ADDRESS RANGE 6K-8K

SELECTS ADDRESS RANGE 8K-10K

SELECTS ADDRESS RANGE 10K-12K

SELECTS ADDRESS RANGE 12K-14K

SELECTS ADDRESS RANGE 14K-16K

ADD LINES
11111
12345

CHIP ENABLES
12345678

LLLLL L LHHHHHHH SELECT ADDRESS RANGE 0-2K
HLLLL L HLHHHHHH SELECT ADDRESS RANGE 2K-4K
LHLLL L HHLHHHHH SELECT ADDRESS RANGE 4K-6K
HHLLL L HHHLHHHH SELECT ADDRESS RANGE 6K-8K
LLHLL L HHHHLHHH SELECT ADDRESS RANGE 8K-10K
HLHLL L HHHHHLHH SELECT ADDRESS RANGE 10K-12K
LHHLL L HHHHHHLH SELECT ADDRESS RANGE 12K-14K
HHHLL L HHHHHHHL SELECT ADDRESS RANGE 14K-16K
xxx XX H HHHHHHHH NO MEMORY SELECT </MREQ=H)

lAll--

~~: A12--
ADDRESS A13

LINES A14--
A1S

EIGHT
ACTIVE

LOW
CHIP

ENABLES

IiIIonoIHhlc W Memories

MEMORY ADDRESS DECODER (conl'd)

DESCRIPTION

THIS PLE8P8 PROVIDES A SINGLE CHIP ADDRESS DOCODER FOR USE WITH MANY POPULAR
8-BIT MICROPROCESSORS SUCH AS 'ffiE Z80 AND 8080. THE FIVE MSB ADDRESS LINES
(All-A15) AND THE MEMORY REQUEST LINE (/MREQ) FROM THE Z80 MICROPROCESSOR ARE
DOCODED TO PRODUCE EIGHT ACTIVE LOW CHIP ENABLES (fCE1-/CE8) TO SELECT A RANGE
OF 2K BYTES FROM A BANK OF EIGHT 2Kx8 STATIC RAMS. THIS BANK OF STATIC RAMS
WILL OCCUPY THE LOWEST 16K BYTES OF ADDRESS SPACE LEAVING THE UPPER 48K BYTE
SPACE AVAILABLE FOR OTHER MEMORIES AND I/O. THE PLE8P8 HAS THREE ADDITIONAL
INPUTS WHICH CAN BE RESERVED FOR FUTURE SYSTEM EXPANSION.

MEMORY ADDRESS
DECODER

PLE8P8

~
CE2

CE3

CE4

ffi
CE6

CE7

CE8

OK

2K

4K

6K

8K

10K

12K

14K

16K
CHIP ENABLE

ADDRESS
MAP

DATA BUS

8

ADDRESS BUS

PLE8P4
P5029
6809 ADDRESS DECODER
MMI SANTA CLARA, CALIFORNIA
.ADD A8 A9 A10 All A12 A13 Al4 A15
•DAT /DRAM /IO /SRAM /PROM

PLE CIRCUIT DESIGN SPECIFICATION
VINCENT COLI 10/13/84

DRAM =
+
+
+
+
+
+

/A8* A12* A13*/A14* A15
/A9* A12* A13*/Al4* A15

/AlO* A12* A13*/A14* A15
/All* A12* A13*/A14* Al5

/A12* /Al4
/Al3*/Al4

ADDRESS LINES
11 1111

8901 2345

LLLL LLLL L H H H OOXX HEX SELECTS DRAMS
LLLL HHLH L H H H BOXX HEX SELECTS DRAMS
HHHH HHLH H L H H BFXX HEX SELECTS I/O PORTS
LLLL LLHH H H L H COXX HEX SELECTS SRAM
LLLL HLHH H H L H DOXX HEX SELECTS SRAM
LLLL LHHH H H H L EOXX HEX SELECTS PROM
HHHH HHHH H H H L FFXX HEX SELECTS PROM

THIS PLE8P4 PROVIDES A SINGLE CHIP ADDRESS DECODER FOR USE WITH MANY POPULAR
8-BIT MICROPROCESSORS SUCH AS THE MOTOROLA 6809. THIS PLE DEVICE DECODES THE
EIGHT MSB ADDRESS LINES (A8-A15) FROM THE MICROPROCESSOR TO PROVIDE FOUR ACTIVE
LOW CHIP ENABLES (/DRAM, /10, /SRAM, AND /PROM).

THE 64K MEMORY MAP OF THE SYSTEM IS DIVIDED UP INTO FOUR SECTIONS: DRAM, 10
PORTS, SRAM, AND PROM. EACH OF THESE FOUR SECTIONS CAN CONTAIN ONE OR MORE
BLOCKS OF MEMORY. EACH OF THESE BLOCKS CAN START AND STOP ON ANY 256 BIT
BOUNDARY

6809 Address Decoder
PLE8P4

16
ADDRESS

DRAM

ADDRESS iO
CHIP

DECODER
SRAM ENABLES

PROM

64K

PROM

56K
SRAM

48K
473/4K

I/O PORTS

DRAM

PLE8P8
P5002
6-BIT TROE/COMPLEMENT AND CLEAR/SET LOGIC
MMI SANTA CLARA, CALIFORNIA
.ADO 11 12 01 02 03 04 05 06
.OAT Y1 Y2 Y3 Y4 Y5 Y6

PLE CIRCUIT DESIGN SPECIFICATION
JOEL ROSENBERG 10/26/83

FUNCTIONS

Yl = /11*/12*/01 OUTPUT /01 (INVERT)
+ /11* 12* 01 OUTPUT 01 (TRUE)
+ 11*/12 CLEAR Y1

Y2 = /11*/12*/02 OUTPUT /02 (INVERT)
+ /11* 12* 02 OUTPUT 02 (TRUE)
+ 11*/12 CLEAR Y2

Y3 = /11*/12*/03 OUTPUT /03 (INVERT)
+ /11* 12* 03 OUTPUT 03 (TRUE)
+ 11*/12 CLEAR Y3

Y4 = /11*/12*/04 OUTPUT /04 (INVERT)
+ /11* 12* 04 OUTPUT 04 (TRUE)
+ 11*/12 CLEAR Y4

Y5 = /11*/12*/05 OUTPUT /05 (INVERT)
+ /11* 12* 05 OUTPUT 05 (TRUE)
+ 11*/12 CLEAR Y5

Y6 = /11*/12*/06 OUTPUT /06 (INVERT)
+ /11* 12* 06 OUTPUT 06 (TRUE)
+ 11*/12 CLEAR Y6

FUNCTION TABLE

11 12 01 02 03 04 05 06 Y1 Y2 Y3 Y4 Y5 Y6

: CONTROL INPUT 0 OUTPUT Y
: LINES 123456 123456 COMMENTS

LHLHLH
LHLHLH
xxx XXX
XXXXXX

HLHLHL
LHLHLH
HHHHHH
LLLLLL

INVERT FUNCTION
TRUE FUNCTION
CLEAR FUNCTION
SET FUNCTION

TRUE/COMPLEMENT AND CLEAR/SET (conl'd)

OFSCRIPTION

THIS PLE8P8 IS A 6-BIT TRIJE/COMPLEMENT AND CLEAR/SET LOGIC FUNCTIONS. THE
CONTIlOL LINES (11 AND 12) SELFX:T ONE OF FOUR LOGIC FUNCTIONS FOR THE 6-BIT
INPUT OATA (01-06) AND THE 6-BIT OUTPUT FUNCTION (Yl-Y6).

WHEN 11 IS FALSE (I1=LOW) THE FUNCTION IS INVERT IF 12 IS FALSE (I2=LOW) OR
TRUE IF 12 IS TRUE (I2=HIGH).

WHEN 11 IS TRUE (I1=HIGH) THE FUNCTION IS CLEAR IF 12 IS FALSE (I2=LOW) OR SET
IF 12 IS TRUE (I2=HIGH).

THE PLESP8 ALSO FEATURFS THREE-STATE OUTPUTS WITH TWO ACTIVE LOW OUTPUT ENABLE
CONTIlOLS (jE1 AND /E2) •

11 12 01-06 Y1-Y6 FUNCTION---------------------------------------
L L 0 /0 INVERT
L H 0 0 TRUE
H L X H CLEAR
H H X L SET

6-BIT TRUE/COMPLEMENT
ZERO/ONE LOGIC FUNCTIONS

PLE8P8

Random Logic

PLE5P8 PLE CIRCUIT DESIGN SPECIFICATION
P5003 FRANK LEE 04/15/84
EXPANDABLE 3-TO-8 DEMULTIPLEXER
MMI SANTA CLARA, CALIFORNIA
.ADD SO Sl S2 DI PO
.OAT YO Y1 Y2 Y3 Y4 Y5 Y6 Y7

YO po* DI * /S2 * /Sl * ISO ACTIVE HIGH, SELECT 0
+ /po * DI ACTIVE LOW, DI INACTIVE
+ /po * S2 ACTIVE LOW, SELECT 4-7
+ /po * 81 ACTIVE LOW, SELECT 2,3,6,7
+ /po * SO ACTIVE LOW, SELECT 1,3,5,7

Yl po* DI * /S2 * /81 * 80 ACTIVE HIGH, SELECT 1
+ /po * DI ACTIVE LOW, DI INACTIVE
+ /po * S2 ACTIVE LOW, SELECT 4,5,6,7
+ /po * Sl ACTIVE LOW, SELECT 2,3,6,7
+ /po * ISO ACTIVE LOW, SELECT 0,2,4,6

Y2 po* DI * /S2 * Sl * ISO ACTIVE HIGH, SELECT 2
+ /po * 01 ACTIVE LOW, DI INACTIVE
+ /po * S2 ACTIVE LOW, SELECT 4-7
+ /po * /Sl ACTIVE LOW, SELECT 0,1,4,5
+ /po * SO ACTIVE LOW, SELECT 1,3,5,7

Y3 po* DI * /S2 * Sl * SO ACTIVE HIGH, SELECT 3
+ /po * DI ACTIVE LOW, DI INACTIVE
+ /po * S2 ACTIVE LOW, SELECT 4-7
+ /po * /81 ACTIVE LOW, SELECT 0,1,4,5
+ /po * ISO ACTIVE LOW, SELECT 0,2,4,6

Y4 po* DI * S2 * /Sl * ISO ACTIVE HIGH, SELECT 4
+ /po * DI ACTIVE LOW, DI INACTIVE
+ /po * /S2 ACTIVE LOW, SELECT 0-3
+ /PO * Sl ACTIVE LOW, SELECT 2,3,6,7
+ /po * SO ACTIVE LOW, SELECT 1,3,5,7

Y5 po* DI * 82 * /81 * 80 ACTIVE HIGH, SELECT 5
+ /po * DI ACTIVE LOW, DI INACTIVE
+ /po * /82 ACTIVE LOW, SELECT 0-3
+ /po * Sl ACTIVE LOW, SELECT 2,3,6,7
+ /po * ISO ACTIVE LOW, SELECT 0,2,4,6

Y6 po* DI * S2 * Sl * ISO ACTIVE HIGH, SELECT 6
+ /po * DI ACTIVE LOW, DI INACTIVE
+ /po * /82 ACTIVE LOW, SELECT 0-3
+ /po * /Sl ACTIVE LOW, SELECT 0,1,4,5
+ /po * SO ACTIVE LOW, SELECT 1,3,5,7

Y7 po* DI * S2 * Sl * SO ACTIVE HIGH, SELECT 7
+ /po * 01 ACTIVE LOW, DI INACTIVE
+ /po * /S2 ACTIVE LOW, SELECT 0-3
+ /po * /Sl ACTIVE LOW, SELECT 0,1,4,5
+ /po * ISO ACTIVE LOW, SELECT 0,2,4,6

•.•__...•_- • --=-
PO or S2 S1 so Y7 Y6 Y5 Y4 Y3 Y2 Yl YO

SSS YYYYYYYY
;PO 01 210 76543210 COMMENTS
-- EXPANDABLE

H L XXX LLLLLLLL DATA INPUT = 0 3-TO-8 DEMULTIPLEXER
H H LLL LLLLLLLH SELECT OUTPUT 0
H H LLH LLLLLLHL SELECT OUTPUT 1 PLE5P8

H H LHL LLLLLHLL SELECT OUTPUT 2
H H LHH LLLLHLLL SELECT OUTPUT 3 vcc

H H HLL LLLHLLLL SELECT OUTPUT 4 Yl E
H H HLH LLHLLLLL SELECT OUTPUT 5
H H HHL LHLLLLLL SELECT OUTPUT 6 PO

H H HHH HLLLLLLL SELECT OUTPUT 7
01L H XXX HHHHHHHH DATA INPUT = 0

L L LLL HHHHHHHL SELECT OUTPUT 0 52

L L LLH HHHHHHLH SELECT OUTPUT 1
L L LHL HHHHHLHH SELECT OUTPUT 2
L L LHH HHHHLHHH SELECT OUTPUT 3
L L HLL HHHLHHHH SELECT OUTPUT 4
L L HLH HHLHHHHH SELECT OUTPUT 5
L L HHL HLHHHHHH SELECT OUTPUT 6
L L HHH LHHHHHHH SELECT OUTPUT 7--

DESCRIPTION

'nIIS PLE5P8 IMPLEMENTS AN EXPANDABLE 3-TO-8 DEMULTIPLEXER. THE DEVICE
DEMULTIPLEXES 'mREE SELECT INPUT SIGNALS (S2-S0) INTO EIGHT OUTPUTS (Y7-YO)
USING THE INPUT 01 WITH POLARITY SELECT PO. SINCE THE DEVICE HAS THREE-STATE
OUTPUTS, IT CAN BE EXPANDED USING THE ACTIVE LOW ENABLE PIN (/E).

l. PO HIGH INDICATES OUTPUT IS ACTIVE HIGH. LOW INDICATES OUTPUT IS
ACTIVE LOW.

2. 01 DATA INPUT (DEMULTIPLEXING INPUT). ACTIVE LOW IF PO IS LOW.
3. S2-S0 SELECT PINS. S2 IS THE MOST SIGNIFICANT BIT. ACTIVE HIGH

REGARDLESS OF PO.
4. Y7-YO OUTPUTS. CAN BE ACTIVE HIGH OR ACTIVE LOW DEPENDING ON PO.

ACTIVE LOW IF PO IS LOW.

L H
H H
L L
H L

X H
S DEMUX
S /DEMUX
X L

OUTPUTS HIGH
DEMUX ACTIVE HIGH
DEMUX ACTIVE LOW
OUTPUTS LOW

IJUn.u ~i.J. 1"1U.LI.••.••r~A61'\

MMI SANTA CLARA, CALIFORNIA
.ADD SX SY Al Bl Cl 01 A2 B2 C2 02
.DAT Xl Yl X2 Y2

Xl • /SX* Al SELECT INPUT Al
+ SX* Bl SELECT INPUT Bl

Y1 • /SY* Cl SELECT INPUT Cl
+ SY* 01 SELECT INPUT 01

X2 • /SX* A2 SELECT INPUT A2
+ SX* B2 SELECT INPUT B2

Y2 • /SY* C2 SELECT INPUT C2
+ SY* 02 SELECT INPUT 02

DESCRIPTION

THIS IS AN EXAMPLE OF TWO INDEPENDENT 2-TO-l MULTIPLEXERS USING A PLElOP4.
THE DEVICE WILL SWITCH BETWEEN TWO PAIRS OF 2-BIT INPUTS (A, B AND C, D), AS
DETERMINED BY THE TWO SELECT LINES (SX, SY), FOR OUTPUT THROUGH TWO PAIRS OF
2-BIT OOTPUTS (X AND Y). THREE-STATE OUTPUTS ARE ALSO PROVIDED WITH TWO
ACTIVE LOW ENABLE PINS (/El AND /E2). THE FUNCTIONS OF THE DEVICE ARE
SUMMARIZED IN THE TABLE BELOW:

SELECT
LINES

S S
X Y

A A B B
1 2 1 2

C COD
1 2 1 2

X Y X Y
1 1 2 2

L L Al A2 X X Cl C2 X X Al Cl A2 C2 SELECT A, C
L H Al A2 X X X X 01 02 Al 01 A2 02 SELECT A, 0
H L X X Bl B2 Cl C2 X X BlB2 Cl C2 SELECT B, C
H H X X Bl B2 X X 01 02 Bl 01 B2 02 SELECT B, 0---

DUAL 2:1
MULTIPLEXER

PLE1OP4

X} FOUR
DATA

Y OUTPUTS

TWO
SELECT
LINES

Random Logic

PLEI0P4
P5005
QUAD 2: 1 MULTI PLEXER WITH POLARITY CONTROL
MMI JAPAN
.ADO SEL POL AO Al A2 A3 BO 81 B2 B3
.OAT YO Yl Y2 Y3

PLE CIRCUIT DESIGN SPECIFICATION
S. HORIKO 04/29/84

YO = /SEL*/POL*/AO SELECT INPUT /AO (COMP)
+ /SEL* POL* AO SELECT INPUT AO (TRUE)
+ SEL*/POL*/BO SELECT INPUT /BO (COMP)
+ SEL* POL* 80 SELECT INPUT BO (TRUE)

Yl = /SEL*/POL*/AI SELECT INPUT /A1 (COMP)
+ /SEL* POL* A1 SELECT INPUT Al (TRUE)
+ SEL*/POL*/BI SELECT INPUT /B1 (COMP)
+ SEL* POL* BI SELECT INPUT B1 (TRUE)

Y2 = /SEL*/POL*/A2 SELECT INPUT /A2 (COMP)
+ /SEL* POL* A2 SELECT INPUT A2 (TRUE)
+ SEL*/POL*/B2 SELECT INPUT /B2 (COMP)
+ SEL* POL* B2 SELECT INPUT B2 (TRUE)

Y3 = /SEL*/POL*/A3 SELECT INPUT /A3 (COMP)
+ /SEL* POL* A3 SELECT INPUT A3 (TRUE)
+ SEL*/POL*/B3 SELECT INPUT /B3 (COMP)
+ SEL* POL* B3 SELECT INPUT B3 (TRUE)

FUNCTION TABLE

SEL POL AO Al A2 A3 BO BI B2 B3 YO Y1 Y2 Y3

: SELECT AAAA BBBB yyyy ~:SEL POL 0123 0123 0123 COMMENTS

L L LLLL XXXX HHHH SELECT COMP INPUT /A=OO
L L LHLH XXXX HLHL SELECT COMP INPUT /A=05
L L HLHL XXXX LHLH SELECT COMP INPUT /A=10
L L HHHH XXXX LLLL SELECT COMP INPUT /A=15
L H LLLL XXXX LLLL SELECT TRUE INPUT A=OO
L H LHLH XXXX LHLH SELECT TRUE INPUT A=05
L H HLHL XXXX HLHL SELECT TRUE INPUT A=10
L H HHHH XXXX HHHH SELECT TRUE INPUT A=15
H L XXXX LLLL HHHH SELECT COMP INPUT /B=OO
H L XXXX LHLH HLHL SELECT COMP INPUT /B=05
H L XXXX HLHL LHLH SELECT COMP INPUT /B=10
H L XXXX HHHH LLLL SELECT COMP INPUT /B=15
H H XXX X LLLL LLLL SELECT TRUE INPUT B=OO
H H XXXX HLHL HLHL SELECT TRUE INPUT B=05
H H XXXX LHLH LHLH SELECT TRUE INPUT B=10
H H XXXX HHHH HHHH SELECT TRUE INPUT 8=15

QUAD 2:1 MULTIPLEXER WITH POLARITY CONTROL (cont'd)

DF.SCRIPTION

THIS IS AN EXAMPLE OF A QUAD 2:1 MULTIPLEXER WITH POLARITY CONTROL IMPLEMENTED
IN A PLE10P4. THE DEVICE SELECTS BETWEEN TWO 4-BIT INPUTS (A1-A4 AND B1-B4)
WHICH ARE DIROCTED TO ONE 4-BIT OUTPUT (Yl-Y4) AS DETERMINED BY ONE INPUT
SELECT LINE (SEL) AND POLARITY CONTROL (POL). WHEN POLARITY IS TRUE
(POL=HIGH), THE TRUE OF THE INPUT SIGNAL IS SELOCTED. WHEN POLARITY IS FALSE
(POL=LOW), THE COMPLEMENT OF THE INPUT SIGNAL IS SELOCTED.

THE PLE10P4 ALSO FEATURES THREE-STATE OUTPUTS WITH TWO ACTIVE LOW ENABLE PINS
(jE1 AND /E2). THE FUNCTION IS SUMMARIZED BELOW:

QUAD 2:1 MULTIPLEXER
WITH POLARITY CONTROL

PLE10P4

EIGHT 1 A
DATA

INPUTS B }

FOUR
Y DATA

OUTPUTS

TWO
CONTROL

LINES

PLE CIRCUIT DESIGN SPECIFICATION
ULRIK MUELLER 04/29/84

PLE5P8
P5006
HEXADECIMAL TO SEVEN SEGMENT DECODER
MMI SANTA CLARA, CALIFORNIA
.ADD ABC 0 LT
•OAT lOA JOB /oe /00 JOE /OF JOG /DP

OA B* /0
+ B* C
+ /A* /C*/O
+ A* C*/O
+ /A* 0
+ /B*/C* 0
+ LT

OB /C*/O
+ A* B* /0
+ /A*/B* /0
+ A*/B* 0
+ /A* /C
+ LT

oe /C* 0
+ A*/B
+ C*/O
+ A* /0
+ /B* /0
+ LT

00 /A*/B*/C
+ /B* 0
+ A*/B* C
+ A* B*/C
+ /A* B* C
+ /A* B* /0
+ LT

OE = /A* /C
+ C* 0
+ /A* B
+ A* B* 0
+ LT

OF /A*/B
+ /B* C*/O
+ /C* 0
+ B* 0
+ /A* B* C
+ LT

OG B*/C
+ /A* B
+ /C* 0
+ A* 0
+ /B* C*/O
+ LT

DP LT

MonolIthic mMemories

THIS EXAMPLE ILLUSTRATES 'mE USE OF A PLE5P8 AS A HEXAD'EX:IMAL ro SEVEN SEGMENT
D'EX:ODER. THE DEVICE D'EX:ODES A 4-BIT BINARY INPUT (D,C,B,A) INTO THE SEVEN
SEGMENT OUTPUTS NEEDED TO DRIVE AN LED DISPLAY. NOTE THAT THIS DESIGN IS AN
IMPROVEMENT FROM THE 74LS47 SINCE ALL 16 HEXADECIMAL DIGITS (O-F) CAN BE
DISPLAYED. A LAMP TEST IS PROVIDED TO ILLUMINATE ALL SEVEN SEGMENTS AND THE
D'EX:IMAL POINT (IF DP IS CONN'EX:TED) BY BRINGING LAMP TEST HIGH (LT=HIGH)
REGARDLESS OF THE OTHER BINARY INPUTS. THREE-STATE OUTPUTS ARE ALSO PROVIDED
WITH ONE ACTIVE LOW ENABLE PIN (jE).

INPUT I INPUT
DIGIT I LT D C B A

L L L L L
L L L L H
L L L H L
L L L H H
L L H L L
L L H L H
L L H H L
L L H H H
L H L L L
L H L L H
L H L H L
L H L H H
L H H L L
L H H L H
L H H H L
L HHHH
H X X X X

! SEGMENT ! OUTPUT
ON I DISPLAY

ABCDEF
BC
ABDEG
ABCDG
BCDFG
ACDFG
ACDEFG
ABC
ABCDEFG
ABCFG
ABCEFG
CDEFG
ADEF
BCDEG
ADEFG
AEFG
ABCDEFG

o
1
2
3
4
5
6
7
8
9
A
b
C
d
E
F
8 *

SEGMENT
IDENTIFICATION

A

'1~1'
"_I;.,

D

lolllC'l :JlylSl6l1lBlglRlbl[ldlE IF1

HEXADECIMAL TO
SEVEN-SEGMENT DECODER

PLESP8

Random Logic

PLE5P8
P5007
5-BIT BINARY TO BCD CONVERTER
MMI SANTA CLARA, CALIFORNIA
.ADD BIO BI1 BI2 BI3 BI4
.DAT BOO B01 B02 B03 B10 B11 B12 B13

PLE CIRCUIT DESIGN SPECIFICATION
VINCENT COLI 02/03/82

B01 /BI4*/BI3* BI1
+ /BI4* BI3* BI2*/BI1
+ BI4* BI3*/BI2* BI1
+ BI4*/BI3*/BI2*/BI1
+ /BI3* BI2* BI1

B02 = /BI4*/BI3* BI2
+ /BI4* BI2* BI1
+ BI4* BI3*/BI2
+ BI4*/BI3*/BI2*/BI1

B03 /BI4* BI3*/BI2*/BI1
+ BI4* BI3* BI2*/BI1
+ BI4*/BI3*/BI2* BI1

B10 /BI4* BIJ*
+ /BI4* BIJ* BI2
+ BIJ* BI2*
+ BI4*/BIJ*/BI2

Bll BI4* BIJ
+ BI4* BI2

B12 BI4*/BI4

B13 BI4*/BI4 CONVERT roURTH BIT OF 1 DECIMAL (MSB)
5-BIT BINARY

TO BCD
CONVERTER

5-BIT {
BINARY
CODE

B1} TWO
BCD

BO DIGITS

"+-011 011""'"' 1U O\".U \".UI"V cn 1cn \conl OJ

FUNCTION TABLE

BI4 BI3 BI2 BIl BIO B13 B12 B11 B10 B03 B02 B01 BOO

;ADDRESS ----DATA----
;BINARY BCD 1 BCD 0 DESCRIPTION
;43 210 3210 3210 (DECIMAL VALUE)---

LL LLL LLLL LLLL 0
LL LLH LLLL LLLH 1
LL IBH LLLL LLHH 3
LL LHL LLLL LLHL 2
LL HHL LLLL LHHL 6
LL HHH LLLL LHHH 7
LL HLH LLLL LHLH 5
LL HLL LLLL LHLL 4

LH LLL LLLL HLLL 8
LH LLH LLLL HLLH 9
LH LHH LLLH LLLH 1 1
LH LHL LLLH LLLL 1 0
LH HHL LLLH LHLL 1 4
LH HHH LLLH LHLH 1 5
LH HLH LLLH LLHH 1 3
LH HLL LLLH LLHL 1 2

HL LLL LLLH LHHL 1 6
HL LLH LLLH LHHH 1 7
HL LHH LLLH HLLH 1 9
HL LHL LLLH HLLL 1 8
HL HHL LLHL LLHL 2 2
HL HHH LLHL LLHH 2 3 1mHL HLH LLHL LLLH 2 1
HL HLL LLHL LLLL 2 0

HH LLL LLHL LHLL 2 4
HH LLH LLHL LHLH 2 5
HH LHH LLHL LHHH 2 7
HH LHL LLHL LHHL 2 6
HH HHL LLHH LLLL 3 0
HH HHH LLHH LLLH 3 1
HH HLH LLHL HLLH 2 9
HH HLL LLHL HLLL 2 8---

DESCRIPTION

THIS 5-BIT BINARY TO 2-DIGIT BCD CONVERTER IS IMPLEMENTED IN A PLE5P8
LOGIC CIRCUIT. THE DEVICE ACCEPTS A 5-BIT BINARY INPUT (BI) AND CONVERTS
THIS INTO TWO 4-BIT BINARY CODED DECIMAL (BCD) OUTPUTS (B1 AND BO).

PLESPS
PSOOS
4-BIT BCD TO GRAY CODE CONVERTER
MMI SANTA CLARA, CALlFURNIA
.ADD BO B1 B2 B3
.DAT GO G1 G2 G3

PLE CIRCUIT DESIGN SPECIFICATION
VINCENT COLI 10/16/81

THIS PLESPS WILL CONVERT A 4-BIT BCD INPUT (B3-BO) INTO A 4-BIT
GRAY CODE REPRESENTATION (G3-G0) FUR OUTPUT.

4-BIT BCD TO GRAY
CODE CONVERTER

PLESP8

4·BIT {
BCD)

4-BIT
G GRAY

CODE

Random Logic

PLE5P8
P5009
4-BIT GRAY CODE TO BCD CONVERTER
MMI SANTA CLARA, CALIFORNIA
.ADD GO G1 G2 G3
.DAT BO 81 B2 B3

PLE CIRCUIT DESIGN SPECIFICATION
VINCENT COLI 03/16/84

THIS PLE5P8 WILL CONVERT A 4-BIT GRAY CODE INPUT (G3-GO) INTO A 4-BIT
BINARY REPRESENTATION (B3-BO) FOR OUTPUT.

4-BIT GRAY CODE TO BCD
CONVERTER

PLESP8

4·BIT {
GRAY G 4
CODE }

4-BIT
B BCD

P5010
8-BIT PRIORITY ENCODER
MMI SANTA CLARA, CALIFORNIA
.ADD 10 II 12 13 14 15 16 17
.DAT SO SI S2 EN

SO I7
+ /16* 15
+ /16*/14* 13
+ /16*/14*/12* Il

81 17
+ 16
+ /15*/14* 13
+ /15*/14* 12

82 17
+ 16
+ 15
+ 14

--INPUT LINES--
I I I I I I I I
76543210

-OUTPUTS-
E 8 8 S
N 210

I7-IO
17-10
17-10
I7-IO

1XXXXXXX
X01XXXXX
XOX01XXX

'"XOXOX01X

17-10
17-10
17-10
I7-IO

1XXXXXXX
XIXXXXXX
XX001XXX
XXOOX1XX

17-10
17-10
17-10
I7-IO

lXXXXXXX
XIXXXXXX
XX1XXXXX
XXXIXXXX

HXXXXXXX
L H X X X X X X
L L H X X X X X
L L L H X X X X
LLLLHXXX
L L L L L H X X
L L L L L L H X
L L L L L L L H
L L L L L L L L

L H H H
L H H L
L H L H
L H L L
L L H H
L L H L
L L L H
L L L L
H L L L

17 HIGH
16 = HIGH
15 = HIGH
14 HIGH
13 HIGH
12 HIGH
Il HIGH
10 HIGH
17- 10 = LOW THEN CARRY OUT

10 ~)11 3-BIT
Sl PRIORITY

12 CODE

8 13
S2

8·BIT
INPUT PRIORITY
LINES 14 ENCODER

EN
15

16

17

8-BIT PRIORITY ENCODER (conl'd)

DESCRIPTION

THIS a-BIT PRIORITY ENCODER SCANS FOR THE FIRST HIGH INPUT LINE (I7-IO) FROM 17
(WHICH HAS THE HIGHEST PRIORITY) TO IO (WHICH HAS THE LOWEST PRIORITY). IT
WILL GENERATE A BINARY ENCODED OUTPUT (S2-S0) WHICH WILL POINT TO THE HIGHEST
PRIORITY INPUT WHICH IS AT A HIGH STATE.

IF NO INPUT LINES ARE HIGH (I7-IO=LOWl, THEN THE BINARY ENCODED OUTPUTS WILL BE
ZERO (S2-S0=LOW) AND THE ENABLE OUTPUT WILL BE HIGH (EN=HIGH) INDICATING A
CARRY OUT TO THE NEXT PRIORITY ENCODER. THE OUTPUT ENABLE WILL BE LOW (EN=LOW)
IF ANY OF THE INPUT LINES ARE HIGH.

THE PLESP4 ALSO HAS THREE-STATE OUTPUTS WITH TWO ACTIVE-LOW OUTPUT ENABLE
CONTROL PINS (IE! AND IE2).

a-BIT PRIORITY
ENCODER

PLE8P4

PLEBP4
PSOll
4-BIT MAGNITUDE COMPARATOR
MMI SANTA CLARA, CALIFORNIA
.ADD AO Al A2 A3 BO B1 B2 B3
.DAT ~ NE LT GT

PLE CIRCUIT DESIGN SPECIFICATION
ULRIK MUELLER 04/01/83

LT • /A3 * B3
+ A3:*:B3 * /A2 * B2
+ A3:*:B3 * A2:*:B2 * /Al * B1
+ A3:*:B3 * A2:*:B2 * Al:*:B1 * /AO * BO

A3 LT B3
A2 LT B2
Al LT Bl
AD LT BO

GT" A3 */B3
+ A3:*:B3 * A2 */B2
+ A3:*:B3 * A2:*:B2 *
+ A3:*:B3 * A2:*:B2 *

Al */B1
A1:*:B1 *

A3 GT B3
A2 GT B2
Al GT Bl
AD GT BO

THIS PLEBP4 COMPARES TWO 4-BIT NUMBERS (A3-AO AND B3-BO) TO ESTABLISH IF THEY
ARE ~UAL (A • B THEN ~"H), NOT EQUAL (A NOT = B THEN NE=H), LESS THAN (A
LT B THEN LT-H), OR GREATER THAN (A GT B THEN GT=H) AND REPORTS THE
COMPARISON STATUS ON THE OUTPUTS (EQ, NE, LT, GT) AS ILLUSTRATED IN THE
OPERATIONS TABLE BELOW.

THE PLEBP4 ALSO FEATURES THREE-STATE OUTPUTS WITH TWO ACTIVE-LOW OUTPUT ENABLE
CONTROL PINS (/El AND /E2).

INPUT NUMBERS
A3-AO B3-BO

COMPARISON STATUS
EQ NE LT GT

A B
ANOT •• B
A LT B
A GT B

H L L L
L H X X
L H H L
L H L H

COMPARE A EQUAL TO B
COMPARE A NOT EQUAL TO B
COMPARE A LESS THAN B
COMPARE A GREATER THAN B

4-BIT MAGNITUDE
COMPARATOR

PLE8P4

PLE CIRCUIT DESIGN SPECIFICATION
VINCENT COLI 10/16/83

PLE12P4
PS012
6-BIT MAGNITUDE COMPARATOR
MMI SANTA CLARA, CALIFORNIA
.ADD AO A1 A2 A3 A4 AS BO B1
.DAT EQ NE LT GT

EQ" AS:*:BS * A4:*:B4 * A3:*:B3 * A2:*:B2 * A1:*:B1 * AO:*:BO A - B

LT =/M * B5
+ M:*:B5 * IA4 * B4
+ AS:*:BS * A4:*:B4 * IA3 * B3
+ AS:*:B5 * A4:*:B4 * A3:*:B3 * /A2 * B2
+ M:*:BS * A4:*:B4 * A3:*:B3 * A2:*:B2 * /Al * B1
+ AS:*:BS * A4:*:B4 * A3:*:B3 * A2:*:B2 * Al:*:B1 * /AO * BO

AS LT BS
A4 LT B4
A3 LT B3
A2 LT B2
Al LT B1
AO LT BO

GT AS */BS
+ M:*:BS *
+ M:*:B5 *
+ M:*:B5 *
+ M:*:BS *
+ A5:*:BS *

AS GT BS
A4 GT B4
A3 GT B3
A2 GT B2
Al GT Bl
AO GT BO

A4 */B4
A4:*:B4 *
A4:*:B4 *
A4:*:B4 *
A4:*:B4 *

A3 */B3
A3:*:B3 *
A3:*:B3 *
A3:*:B3 *

A2 */B2
A2:*:B2 *
A2:*:B2 *

Al */B1
A1:*:B1 *

THIS PLEl2P4 COMPARES TWO 6-BIT NUMBERS (AS-AO AND BS-BO) TO ESTABLISH IF THEY
ARE EQUAL (A ,. B THEN EQ=H), NOT EQUAL (A NOT •• B THEN NE=H), LESS THAN
(A LT B THEN LT=H), OR GREATER THAN (A GT B THEN GT-H) AND REPORTS THE
COMPARISON STATUS ON THE OUTPUTS (EQ, NE, LT, GT) AS ILLUSTRATED IN THE
OPERATIONS TABLE BELOW.

THE PLE12P4 ALSO FEATURES THREE-STATE OUTPUTS WITH TWO ACTIVE-LOW OUTPUT ENABLE
CONTllOL PINS (/E1 AND /E2).

INPUT NUMBERS COMPARISON STATUS
M-AO B5-BO EQ NE LT GT OPERATION

A B
ANOT-B
A LT B
A GT B

6-BIT MAGNITUDE
COMPARATOR

PLE12P4

H L L L
L H X X
L H H L
L H L H

COMPARE A EQUAL TO B
COMPARE A NOT EQUAL TO B
COMPARE A LESS THAN B
COMPARE A GREATER THAN B

~~IA';" MA~;::!iUDE
INPUT

NUMBERS B 6 COMPARATOR

PLE9P4
PSOllA
4-BIT MAGNITUDE COMPARATORWITH
MHI SANTA CLARA, CALIFORNIA
.ADD AO A! A2 A3 BO Bl B2 B3 POL
.DAT EQ NE LT GT

PLE CIRCUIT DESIGN SPECIFICATION
COLI/MUELLER 09/09/84

EQ A]:*:B3* POL * A2:*:B2* POL * A! : * :Bl * POL * AO:*:BO* POL A EQ B
+ A]:+:B3*/POL * A2:+:B2*/POL * A!:+:Bl*/POL * AD:+:BO*/POL A /EQ B

NE A3:+:B3* POL + A2:+:B2* POL + A!:+:Bl* POL + AO:+:BO* POL A NEB
+ A]: * :B3* /poL + A2:*:B2*/POL + A!:* :Bl* /POL + AD: * :BO*/POL A /NEB

LT /A3 * B3* POL A3 LT B3
+ A]:* :B3* POL * /A2 * B2* POL A2 LT B2
+ A]:*:B3* POL * A2:*:B2* POL * /A! * Bl* POL AI LT Bl
+ A]:*:B3* POL * A2:*:B2* POL * A!:*:Bl* POL * /AO * BO* POL AD LT BO
+ A3 */B3*/POL A3 /LT B3
+ A] :*:B3*/POL * A2 */B2 */POL A2 /LT B2
+ A3: * :B3* /POL * A2: * :B2* /POL * A! */Bl*/POL A! /LT Bl
+ A3:*:B3*/POL * A2:*:B2*/POL * A!: * :Bl* /POL * AD */BO*/POL AD /LT BO
+ A]:* :B3*/POL + A2:*:B2*/POL + Al:*:Bl*/POL + AD:* :BO* /POL A /LT B

GT A] */B3* POL A3 GT B3
+ A]:*:B3* POL * A2 */B2* POL A2 GT B2
+ A]: * :B3* POL * A2:*:B2* POL * A! */Bl* POL A! GT Bl
+ A]:*:B3* POL * A2:*:B2* POL * A!:*:Bl* POL * AD */BO* POL AD GT BO
+ /A] * B3*/POL A] /GT B3
+ A]: * :B3* /poL * /A2 * B2*/POL A2 /GT B2
+ A]: * :B3* /poL * A2:*:B2*/POL * /A! * Bl*/POL A! /GT Bl
+ A]: * :B3* /poL * A2:*:B2*/POL * A!:*:Bl*/POL * /AO * BO*/POL AD /GT BO
+ A3:*:B3*/POL + A2:*:B2*/POL + A!: * :Bl* /POL + AD: * :BO*/POL A /GT B

DESCRIPTION

THIS PLE9P4 COMPARES TWO 4-BIT NUMBERS (A3-AD AND B3-BO) TO ESTABLISH IF THEY
ARE EQUAL (A EQ B), OOT EQUAL (A NE B), LESS THAN (A LT B), OR GREATER THAN
(A GT B). THE COMPARISON STATUS IS REPORTED WITH ACTIVE-HIGH POLARITY (EQ,
NE, LT, GT) WHEN THE POLARITY CONTROL INPUT IS TRUE (POL=H) AND WITH ACTIVE-LOW
POLARITY (/EQ, /NE, /LT, /GT) WHEN THE POLARITY CONTROL INPUT IS FALSE (POL=L).

THE PLE8P4 ALSO FEATURES THREE-STATE OUTPUTS WITH ONE ACTIVE-LOW OUTPUT ENABLE
CONTroL PIN (/E).

INPUT NUMBERS
A]-AD B3-BO

POLARITY
POL *

COMPARISON STATUS
EQ NE LT GT

A EQ B
A NE B
A LT B
A GT B

COMPARE A EQUAL TO B
COMPARE A NOT EQUAL TO B
CXlMPAREA LESS THAN B
CXlMPAREA GREATER THAN B

"TWO 1A";'"
4-BIT
INPUT

NUMBERS B

4-Bit Magnitude Comparator
with Polarity Control

PLE9P4

4-BIT
MAGNITUDE

COMPARATOR
WITH

POLARITY
CONTROL

!"Lr;.L.L!"C .-- •... .-.,- - --
P5013 VINCENT COLI 06/12/84
8-BIT BARREL SHIFTER
MMI SANTA CLARA, CALIFORNIA
.ADO 00 01 02 03 04 05 06 07 SO S1 S2
.OAT 00 01 02 03 04 05 06 07

00 " /SO*/S1*/S2* 00 SHIFT 0 PLACES
+ SO*/S1*/S2* 01 SHIFT 1 PLACES
+ /SO* S1*/S2* 02 SHIFT 2 PLACES
+ SO* S1*/S2* 03 SHIFT 3 PLACES
+ /SO*/S1* S2* 04 SHIFT 4 PLACES
+ SO*/S1* S2* 05 SHIFT 5 PLACES
+ /SO* S1* S2* 06 SHIFT 6 PLACES
+ SO* S1* S2* 07 SHIFT 7 PLACES

01 " /SO*/S1*/S2* 01 SHIFT 0 PLACES
+ 50*/51*/S2* 02 SHIFT 1 PLACES
+ /SO* 51*/S2* 03 SHIFT 2 PLACES
+ 50* S1*/S2* 04 SHIFT 3 PLACE5
+ /50*/S1* S2* 05 5HIFT 4 PLACE5
+ 50*/S1* 52* 06 SHIFT 5 PLACES
+ /SO* 51* S2* 07 SHIFT 6 PLACES
+ SO* S1* 52* 00 5HIFT 7 PLACE5

02 /SO*/51*/52* 02 SHIFT 0 PLACES
+ 50*/51*/52* 03 SHIFT 1 PLACES
+ /SO* 51*/52* 04 SHIFT 2 PLACES
+ SO* S1*/S2* 05 5HIFT 3 PLACE5
+ /50*/S1* 52* 06 5HIFT 4 PLACE5
+ SO*/S1* 52* 07 5HIFT 5 PLACES
+ /SO* 51* 52* 00 SHIFT 6 PLACE5
+ 50* S1* S2* 01 SHIFT 7 PLACES

03 " /50*/51*/52* 03 5HIFT 0 PLACES
+ SO*/S1*/52* 04 SHIFT 1 PLACE5
+ /50* S1*/S2* 05 5HIFT 2 PLACES
+ SO* S1*/52* 06 SHIFT 3 PLACES
+ /SO*/51* S2* 07 SHIFT 4 PLACE5
+ SO*/S1* 52* 00 SHIFT 5 PLACE5
+ /50* S1* S2* 01 5HIFT 6 PLACES
+ SO* 51* 52* 02 SHIFT 7 PLACE5

04 " /SO*/S1*/S2* 04 5HIFT 0 PLACES
+ SO*/S1*/S2* 05 SHIFT 1 PLACES
+ /SO* 51*/S2* 06 5HIFT 2 PLACES
+ 50* S1*/S2* 07 SHIFT 3 PLACES
+ /50*/S1* 52* 00 SHIFT 4 PLACES
+ 50*/S1* 52* 01 SHIFT 5 PLACES
+ /SO* 51* 52* 02 5HIFT 6 PLACE5
+ 50* 51* S2* D3 5HIFT 7 PLACES

8-BIT BARREL SHIFTER (conl'd)

DESCRIPTION

THE 8-BIT BARREL SHIFTER, IMPLEMENTED IN A PLEIIP8, ROTATES EIGHT BITS OF DATA
(07-00) A NUMBER OF LOCATIONS INTO THE OUTPUTS (07-00) AS SPECIFIED BY THE

3-BIT BINARY ENCODED SHIFT CONTROL LINE (S2-S0). THE THREE-STATE OUTPUTS ARE
IN A HIGH-Z STATE WHEN ANY ONE OF THE TWO OUTPUT ENABLE PINS (lEI OR lEI) ARE
HIGH.

A POSSIBLE UPGRADE VERSION OF THIS DESIGN IMPLEMENTED IN A PLEl2P8 COULD
INCLUDE A DIRECTION CONTROL LINE. THIS CONTROL LINE PERMITS THE 8-BIT BARREL
SHIFTER TO ROTATE DATA IN EITHER DIRECTION (LEFT OR RIGHT).

8-BIT BARREL SHIFTER

PLE11P8

07 VCC

50

05 51

52

03 E1

E2

E3

07

06

01 05

004

GNO 03

8-BIT
DATA
INPUT

00---
01---
02---
0304 _

0506 _
07 _

8-BIT
BARREL
5HIFTER

00101
02
03 ~-:~~
04 OUTPUT
05
06
07

t t t
505152--3-BIT5HIFT

CONTROL LINE

Random Logic

8-BIT BARREL SHIFTER (conl'd)

05 = /50*/51*/52* 05 SHIFT 0 PLACES
+ 50*/51*/52* 06 SHIFT 1 PLACES
+ /50* 51*/52* 07 SHIFT 2 PLACES
+ 50* 51*/52* DO SHIFT 3 PLACES
+ /50*/51* 52* 01 SHIFT 4 PLACES
+ 50*/51* 52* 02 SHIFT 5 PLACES
+ /50* 51* 52* 03 SHIFT 6 PLACES
+ 50* 51* 52* 04 SHIFT 7 PLACES

06 /50*/51*/52* 06 SHIFT 0 PLACES
+ 50*/51*/52* 07 SHIFT 1 PLACES
+ /50* 51*/52* DO SHIFT 2 PLACES
+ 50* 51*/52* 01 SHIFT 3 PLACES
+ /50*/51* 52* 02 SHIFT 4 PLACES
+ 50*/51* 52* 03 SHIFT 5 PLACES
+ /50* 51* 52* 04 SHIFT 6 PLACES
+ 50* 51* 52* 05 SHIFT 7 PLACES

07 /50*/51*/52* 07 SHIFT 0 PLACES
+ 50*/51*/52* DO SHIFT 1 PLACES
+ /50* 51*/52* 01 SHIFT 2 PLACES
+ 50* 51*/52* 02 SHIFT 3 PLACES
+ /50*/51* 52* 03 SHIFT 4 PLACES
+ 50*/51* 52* 04 SHIFT 5 PLACES
+ /50* 51* 52* 05 SHIFT 6 PLACES
+ 50* 51* 52* 06 SHIFT 7 PLACES

FUNCTION TABLE

52 51 SO 07 06 05 04 03 02 01 DO 07 06 05 04 03 02 01 00

1SHIFT INPUT DATA OUTPUT DATA
1 555 00000000 0oooooס0
1 210 76543210 76543210 COMMENTS--

LLL HLLLLLLL HLLLLLLL BARREL SHIFT ONE HIGH 0 PLACES
LLH HLLLLLLL LHLLLLLL BARREL SHIFT ONE HIGH 1 PLACES
LHL HLLLLLLL LLHLLLLL BARREL SHIFT ONE HIGH 2 PLACES
LHH HLLLLLLL LLLHLLLL BARREL SHIFT ONE HIGH 3 PLACES
HLL HLLLLLLL LLLLHLLL BARREL SHIFT ONE HIGH 4 PLACES
HLH HLLLLLLL LLLLLHLL BARREL SHIFT ONE HIGH 5 PLACES
HHL HLLLLLLL LLLLLLHL BARREL SHIFT ONE HIGH 6 PLACES
HHH HLLLLLLL LLLLLLLH BARREL SHIFT ONE HIGH 7 PLACES
LLL LHHHHHHH LHHHHHHH BARREL SHIFT ONE LOW 0 PLACES
LLH LHHHHHHH HLHHHHHH BARREL SHIFT ONE LOW 1 PLACES
LHL LHHHHHHH HHLHHHHH BARREL SHIFT ONE LOW 2 PLACES
LHH LHHHHHHH HHHLHHHH BARREL SHIFT ONE LOW 3 PLACES
HLL LHHHHHHH HHHHLHHH BARREL SHIFT ONE LOW 4 PLACES
HLH LHHHHHHH HHHHHLHH BARREL SHIFT ONE LOW 5 PLACES
HHL LHHHHHHH HHHHHHLH BARREL SHIFT ONE LOW 6 PLACES
HHH LHHHHHHH HHHHHHHL BARREL SHIFT ONE LOW 7 PLACES--

Random Logic

PLEllP4 PLE CIRCUIT OE5IGN 5PECIFICATION
P5014 CHRI5 JAY 05/30/84
4-BIT RIGHT 5HIFTER WITH PROGRAMMABLE OUTPUT POLARITY
MMI LTO., FARNBOROUGH, U. K •
•ADO 50 51 INV 00 01 02 03 04 05 06 /EN
.OAT 00 01 02 03

00 00*/50*/51*/INV* EN 5ELOCT INPUT 00
+ /00*/50*/51* INV* EN 5ELOCT INPUT /00
+ 01* 50*/51*/INV* EN 5ELOCT INPUT 01
+ /01* 50*/51* INV* EN 5ELOCT INPUT /01
+ 02*/50* 51*/INV* EN 5ELOCT INPUT 02
+ /02*/50* 51* INV* EN 5ELOCT INPUT /02
+ 03* 50* 51*/INV* EN 5ELOCT INPUT 03
+ /03* 50* 51* INV* EN 5ELOCT INPUT /03

01 01*/50*/51*/INV* EN 5ELOCT INPUT 01
+ /01*/50*/51* INV* EN 5ELOCT INPUT /01
+ 02* 50*/51*/INV* EN 5ELOCT INPUT 02
+ /02* 50*/51* INV* EN 5ELOCT INPUT /02
+ 03*/50* 51*/INV* EN 5ELOCT INPUT 03
+ /03*/50* 51* INV* EN 5ELOCT INPUT /03
+ 04* 50* 51*/INV* EN 5ELOCT INPUT 04
+ /04* 50* 51* INV* EN 5ELOCT INPUT /04

02 02*/50*/51*/INV* EN 5ELOCT INPUT 02
+ /02*/50*/51* INV* EN 5ELOCT INPUT /02
+ 03* 50*/51*/INV* EN 5ELOCT INPUT 03
+ /03* 50*/51* INV* EN 5ELOCT INPUT /03
+ 04*/50* 51*/INV* EN 5ELOCT INPUT 04
+ /04*/50* 51* INV* EN 5ELOCT INPUT /04
+ 05* 50* 51*/INV* EN 5ELOCT INPUT 05 D+ /05* 50* 51* INV* EN 5ELOCT INPUT /05

03 03*/50*/51*/INV* EN 5ELOCT INPUT 03
+ /03*/50*/51* INV* EN 5ELOCT INPUT /03
+ 04* 50*/51*/INV* EN 5ELOCT INPUT 04
+ /04* 50*/51* INV* EN 5ELOCT INPUT /04
+ 05*/50* 51*/INV* EN 5ELOCT INPUT 05
+ /05*/50* 51* INV* EN 5ELOCT INPUT /05
+ 06* 50* 51*/INV* EN 5ELOCT INPUT 06
+ /06* 50* 51* INV* EN 5ELOCT INPUT /06

~-CONTROL-
~/ I
~E S S N
~N 1 0 V

H X X X
L L L L
L L H L
L H L L
L H H L
L L L H
L L H H
L H L H
L H H H

- INPUT DATA-
D D D D D D D
6543210

x x x x x x X
L L L H H H H
L L L H H H H
L L L H H H H
L L L H H H H
L L L H H H H
L L L H H H H
LLLHHHH
L L L H H H H

OUTPUTS
000 0
3 2 1 0

L L L L
H H H H
L H H H
L L H H
L L L H
L L L L
H L L L
H H L L
H H H L

TEST ENABLE, OUTPUTS GO LOW
SHIFT COUNT 0, TRUE POLARITY
SHIFT COUNT 1, TRUE POLARITY
SHIFT COUNT 2, TRUE POLARITY
SHIFT COUNT 3, TRUE POLARITY
SHIFT COUNT 0, COMP POLARITY
SHIFT COUNT 1, COMP POLARITY
SHIFT COUNT 2, COMP POLARITY
SHIFT COUNT 3, COMP POLARITY

4-BIT RIGHT SHIFTER WITH PROGRAMMABLE OUTPUT POLARITY (conl'd)
D&<;CRIPTION

THIS PLEIIP4 IMPLEMENTS A 4-BIT RIGHT SHIFTER WITH PROGRAMMABLE OUTPUT
POLARITY. THE SHIFTER CAN RIGHT SHIFT SEVEN BITS OF DATA, FOUR BITS AT A
TIME. THE SEVEN DATA INPUTS (D6-DO) ARE SHIFTED 0, 1, 2, OR 3 LOCATIONS AS
DETERMINED BY THE 2-BIT SHIFT CONTROL LINE (SI-S0). THE SHIFTED DATA IS THEN
DIREX::TED TO THE FOUR OUTPUTS (03-00).

THE OUTPUT DATA IS NONINVERTED (O=D) WHEN INV=L AND INVERTED (0=/0) WHEN
INV=H. THE OUTPUTS ARE FORCED LOW (O=L) WHEN /EN=H REGARDLESS OF OTHER
INPUTS. THE PLEllP4 ALSO FEATURES THREE-STATE OUTPUTS WITH ONE ACTIVE LOW
OUTPUT ENABLE <IE).

A POSSIBLE UPGRADE VERSION OF THIS D&<;IGN IMPLEMENTED IN A PLE12P4 COULD
INCLUDE A DIREX::TION CONTROL LINE. THIS CONTROL LINE PERMITS THE 4-BIT RIGHT
SHIFTER TO SHIFT DATA IN EITHER DIREX::TION (LEFT OR RIGHT).

DISABLE OUTPUTS LOW
SHIFT NONINVERTED DATA "N" PLACES
SHIFT INVERTED DATA "N" PLACES

L
SHIFT(D)
SHIFT (/0)

4-BIT RIGHT SHiFfER
WITH PROGRAMMABLE

OUTPUT POLARITY

/

00- 4-BIT
01_ RIGHT

SEVEN 02_ SHIFTER
DATA 03_ WITH

INPUTS 04_ PROGRAMMABLE
05__ OUTPUT
06_ POLARITY

00]01 FOUR
DATA

02 OUTPUTS

03

t t t
Sl SO INV EN E---SHIFT

CONTROL
LINE

Random Logic

PLE8P8 PLE CIRCUIT DESIGN SPECIFICATION
P5015 MIKE VOGEL 11/28/83
8-BIT 'lWO'S COMPLEMENT CONVERSION
MMI BREA, CALIFORNIA
.ADD DO D1 D2 D3 D4 D5 D6 D7
.DAT YO Y1 Y2 Y3 Y4 Y5 Y6 Y7

YO ••DO CONVERT 1ST BIT (LSB)

Y1 = D1 :+: DO CONVERT 2ND BIT

Y2 ••D2 :+: DO + D1 CONVERT 3RD BIT

Y3 = D3 :+: DO + 01 + 02 CONVERT 4TH BIT

Y4 = 04 :+: DO + D1 + 02 + 03 CONVERT 5TH BIT

Y5 ••05 :+: DO + 01 + 02 + 03 + 04 CONVERT 6TH BIT

Y6 D6 :+: DO + 01 + 02 + 03 + 04 + 05 CONVERT 7TH BIT

Y7 = 07 :+: DO + 01 + 02 + 03 + 04 + 05 + D6 CONVERT 8TH BIT (MSB)

FUNCTION TABLE

D7 06 05 04 D3 D2 01 DO Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO ~OECIMAL--
L L L L L L L L L L L L L L L L 0
L L L L L L L H H H H H H H H H 1
L L L L L L H H H H H H H H L H 3
L L L L L H H H H H H H H L L H 7
L L L L H H H H H H H H L L L H 15
L L L H H H H H H H H L L L L H 31
L L H H H H H H H H L L L L L H 63
L H H H H H H H H L L L L L L H 127
H H H H H H H H L L L L L L L L 255
H H H H H H H L L L L L L L H L 254
H H H H H H L L L L L L L H L L 252
H H H H H L L L L L L L H L L L 248
H H H H L L L L L L L H L L L L 240
H H H L L L L L L L H L L L L L 224
H H L L L L L L L H L L L L L L 192
H L L L L L L L H L L L L L L L 128--

B-BIT {
BINARY D~

NUMBER }

TWO'S
Y COMPLEMENT

REPRESENTATION

8-BIT TWO'S COMPLEMENT CONVERSION (cont'd)

DESCRIPTION

THIS PLESP8 CONVERTS AN 8-BIT BINARY NUMBER (07-00) INTO TWOI S COMPLEMENT
REPRESENTATION (Y7-YO) WHERE 07 AND Y7 ARE THE MSB AND DO AND YO ARE THE LSB.
TWO'S COMPLEMENT REPRESENTATION IS USED IN SIGNED ARITHMETIC SYSTEMS.

8-BIT TWO'S COMPLEMENT
CONVERSION

PLE8P8

PLESP8
PS027
A PORTION OF
MMI JAPAN
.ADD AO A1 A2 A3 A4
•OAT NAO NAl NA2 NA3

PLE CIRCUIT DESIGN SPECIFICATION
S. BORIKO 11/29/83

TIMING GENERATOR FOR PAL ARRAY PROGRAMMING

: NEXT ADDRESS GENERATOR

NAO . /AO

NAl AO
:+: A1

NA2 A2
:+: AO* Al

NA3 A3
:+: AO* Al* A2

NA4 A4
:+: AO* A1* A2* A3

TIALR = /A4*/A3
+ /A4* /A2*/Al

TVCC = /A4*/A3* A2
+ /M* A3*/A2*/Al

TO = /A4* A3*/A2*/Al*/AO
+ /A4*/A3* A2* A1
+ /A4*/A3* A2* AO

Random Logic

TIMING GENERATOR FOR PAL PROGRAMMING (cont'd)

FUNCTION TABLE

A4 A3 A2 A1 AO NA4 NA3 NA2 NA1 NAO TIALR TVCC oro

NNNNN
;AAAAA AAAAA TIMING WAVEFORMS
;43210 43210 TIALR TVCC oro ; It ; COMMENTS---

LLLLL LLLLH H L L 01 ASSERT TIALR
LLLLH LLLHL H L L 02
LLLHL LLLHH H L L 03
LLLHH LLHLL H L L 04
LLHLL LLHLH H H L 05 ASSERT TVCC
LLHLH LLHHL H H H 06 ASSERT oro
LLHHL LLHHH H H H 07
LLHHH LHLLL H H H I 08
LHLLL LHLLH H H H 09
LHLLH LHLHL H H L 10 CLEAR oro
LHLHL LHLHH L L L 11 CLEAR TIALR & TVCC
LHLHH LHHLL L L L 12
LHHLL LHHLH L L L 13
LHHLH LHHHL L L L 14
LHHHL LHHHH L L L 15
LHHHH HLLLL L L L 16 I
HLLLL HLLLH L L L 17
HLLLH HLLHL L L L 18
HLLHL HLLHH L L L 19
HLLHH HLHLL L L L 20
HLHLL HLHLH L L L 21
HLHLH HLHHL L L L 22
HLHHL HLHHH L L L 23 I
HLHHH HHLLL L L L 24 DHHLLL HHLLH L L L 25
HHLLH HHLHL L L L 26
HHLHL HHLHH L L L 27
HHLHH HHHLL L L L 28
HHHLL HHHLH L L L 29
HHHLH HHHHL L L L 30
HHHHL HHHHH L L L 31
HHHHH LLLLL L L L 32---

TIMING GENERATOR FOR PAL PROGRAMMING (conl'd)

DESCRIPTION

THIS LOGIC SPECIFICATION IS A TIMING SIGNAL GENERATOR TO BE USED FOR
ARRAY PROGRAMMING OF PAL DEVICES. A PLE5P8 FOLLOWED BY AN 8-BIT
REGISTER ARE USED TO IMPLEMENT THIS FUNCTION.

THE PLE CONTAINS BOTH 5-BIT NEXT ADDRESS AND 3-BIT WAVEFORMS. TIALR
OUTPUT IS A TIMING WAVEFORM FOR I, A, AND L/R SIGNALS, AND TVCC AND
TO OUTPUTS ARE USED FOR VCC AND 0 SIGNALS, RESPECTIVELY.

APPLYING 200KHz CLOCK SIGNAL TO THE CLK INPUT OF THE REGISTER
GENERATES THE FOLLOWING TIMINGS:

1. I, A, AND L/R WIDTH 50 usee
2. tD2 20 usee
3. tD 5 usee
4. tVCCP 30 usee
5. Tp 20 usee

BECAUSE THE TIMING PATTERNS ARE STORED IN THE PROM, WE CAN EASILY
CALIBRATE THE RELATIONS AND THE PERIOD AMONG THOSE SIGNALS TO MAKE
AN OPTIMUM CONDITION.

A PORTION OF A
TIMING GENERATOR FOR

PAL LOGIC CIRCUIT ARRAY PROGRAMMING

PLE5P8

Random Logic

PLESP8
PS028
TIMING GENERATOR
MMI JAPAN
.ADo AO Al A2 A3 AC
• OAT NAO NAl NA2 NA3 NAC TVCC TP01 TPll

PLE CIRCUIT DESIGN SPECIFICATION
S. HORIKO 11/29/83

FOR PAL DEVICE SECURITY FUSE PROGRAMMING

NEXT ADDRESS GENERATOR
(THE COUNTER LOCKS UP AT COUN~22

NAO •• /AC* /Al*/AO INCREJmNTER (LSB)
+ /A4* Al*/AO INCREJmNTER (LSB)
+ AC*/A3*/A2* /AO INCREJmNTER (LSB)
+ A4*/A3* A2*/Al INCREJmNTER (LSB)

NAl •• /AC* /Al* AO INCREJmNTER (BIT1)
+ /AC* Al*/AO INCREJmNTER (BIT1)
+ AC*/A3*/A2*/Al* AO INCREJmNTER (BIT1)
+ AC*/A3*/A2* Al*/AO INCREJmNTER (BIT1)

NA2 •• /AC* A2*/Al INCREJmNTER (BIT2)
+ /AC* A2* /AO INCREJmNTER (BIT2)
+ /A4* /A2* A1* AO INCREJmNTER (BIT2)
+ A4*/A3* A2*/Al INCREJmNTER (BIT2)
+ A4*/A3*/A2* Al* AO INCREJmNTER (BIT2)

NA3 •• /AC* A3*/A2 INCREJmNTER (BIT3)
+ /AC* A3* /Al INCREJmNTER (BIT3)
+ /AC* A3* /AO INCREJmNTER (BIT3)
+ /AC*/A3* A2* A1* AO INCREJmNTER (BIT3)

NA4 •• /AC* A3* A2* A1* AO INCREJmNTER (MSB)
+ AC*/A3*/A2 INCREJmNTER (MSB) D+ AC*/A3* /Al INCREJmNTER (MSB)

TIMING WAVEFORMS

TVCC •• /AC TIMING FOR \lCC
+ AC* /A3* /A2* /Al
+ AC*/A3*/A2* /AO

TP01 •• /AC*/A3* A2
+ /A4*/A3* Al
+ /A4*/A3* AO
+ /AC* A3*/A2*/Al*/AO

TP11 •• /AC* A3* A2
+ /AC* A3* Al
+ AC*/A3*/A2*/Al

l:un\",..&..&.v •..•

A4 A3 A2 A1 AO NA4 NA3 NA2 NA1 NAO TVOC TP01 TP11

NNNNN
lAAAAA AAAAA TIMING WAVEFORMS
143210 43210 TVCCP TP01 TP11 ; II 1 COMMENTS--

LLLLL LLLLH H L L 01 ASSERT TVCC, START HERE
LLLLH LLLHL H H L 02 ASSERT TP01
LLLHL LLLHH H H L 03
LLLHH LLHLL H H L 04
LLHLL LLHLH H H L 05
LLHLH LLHHL H H L 06
LLHHL LLHHH H H L 07
LLHHH LHLLL H H L 08
LHLLL LHLLH H H L 09 CLEAR TP01
LHLLH LHLHL H L L 10 ASSERT TP11
LHLHL LHLHH H L H 11
LHLHH LHHLL H L H 12
LHHLL LHHLH H L H 13
LHHLH LHHHL H L H 14
LHHHL LHHHH H L R 15
LHHHR HLLLL R L R 16
RLLLL RLLLR H L R 17
HLLLR RLLHL H L R 18
RLLHL RLLHR R L L 19 CLEAR TP11
RLLHH RLHLL L L L 20 CLEAR TVCC
RLHLL RLHLR L L L 21
RLHLR RLHLR L L L 22 LOOP HERE UNTIL RESET--

THIS LOGIC SPECIFICATION IS A TIMING SIGNAL GENERATOR TO BE USED FOR
SECURITY FUSE PROGRAMMING OF PAL DEVICES. A PLE5 p8 FOLLOWED BY AN
8-BIT REGISTER ARE USED TO IMPLEMENT THIS FUNCTION.

THE PLE LOGIC CIRCUIT CONTAINS TWO FUNCTIONS IN THE SINGLE CHIP. THE FIRST
FUNCTION IS A UNIQUE COUNTER USED FOR NEXT ADDRESS GENERATION. THE COUNTER
INCREMENTS UP TO COUNT-21 AND THEN LOCKS UP THE INCREMENTAL OPERATION AT
COUNT-22. THE SECOND FUNCTION IS A TIMING GENERATOR USED FOR DEFINING
TIMING RELATIONSHIP AMOUNG vcc, POI, AND PII SIGNALS.

elK
RESET

THIS LOGIC OUTPUTS A SEQUENCE OF TIMING PATTERNS DURING THE INCREMENTAL
OPERATION AND THEN HOLDS ALL OUTPUTS LOW UNTIL A RESET SIGNAL FOR THE
8-BIT REGISTER IS APPLIED.

APPLYING 200 KHz CLOCK SIGNAL TO THE CLK INPUT OF THE REGISTER, THE
FOLLOWING TIMINGS ARE GENERATED:

1. VCC WIDTH
2. TPP
3. tD

95 usee
40 usee

5 usee

BY APPLYING THIS DESIGN METHOD, WE CAN EASILY GENERATE A SEQUENCE OF
UNIQUELY DEFINED PATTERNS EACH TIME THE RESET PULSE IS APPLIED.

TIMING GENERATOR FOR PAL
SECURITY FUSE PROGRAMMING

PLE5P8

Fast Arithmetic Look-up
In perfonning arithmetic operations like trigonometric functions,
multiplications and division, in order to reduce the delay,look-up
tables are often used.

Sine Look-up
For trigonometric functions like sine function, it is very time-
consuming to generate the function using the polynomial which
represents the function. PLE devices can provide a very good
alternative for sine look-up. An example is to use a 2Kx8 PLE
device to do a sine look-up of an 11-bit input to 8-bit sine
outputs.

Since sine function has the following property: sin (x) = sin (rr-x)
= -sin (71'+ x) = -sin (2rr-x) = sin (271'+x), what is needed is just the
sine function for 0 < x < 71'/2;the rest can be easily calculated
using the above relations. In order to fUlly utilize the dynamic
range, the inputs of the sine look-up PLE device should be
normalized to (71'/2)/ (2n) = rr/[2n + 1] where n is the number of
address lines to the device.

Since n is fixed for the PLE device chosen, and 71'is a constant,
for the look-up table rr/[2n + 1] is a constant. Therefore, if the
sine function of a given x is to be found, x will first be multiplied
by the constant [2n + 1]/71'and sent to the address of the PLE
device to get the final result.

Cos (x) is related to sine function as sin (rr/2-x). Thus the cosine
function can also be found in the same manner by using rr/2-x
instead of just x. Other functions like tangent, secant etc., can
also be found as a function of sine.

To increase the dynamic range of outputs, we can just use
another PLE device to generate the less-significant bits of the
sine function.

If a larger dynamic range is needed for the inputs, the result may
be approximated using the Taylor series:

f (X) = f (XO) + f' (XO) (X - XO) + 1/2f" (XO) (X - XO)2 + .

where f' and f" are the first and second derivations of f. Since XO
by itself represents a resolution of 2-n. and X is XO concatenated
with the rest of the bits, X - XO must lie between 0 and 1/2-n For
f (X) = sin (X),

f (XO) = sin (XO)
f' (XO) = cos (XO)

and f" (XO) = -sin (XO)

So f" (XO) is between -1 and 0 for XO lies between 0 and 71'/2and
X - XO <2-n Therefore, the last term will be between' 1/2n and 0,
and as long as we do not want to expand the dynamic range of X
beyond 2n-bits, it should be sufficient to approximate sin (X) In
the first two terms:

sin (X) + sin (XO) + cos (XO) (X-XO)

Since X-XO is represented by only the bits after the more
significant n-bits, and cos (XO) = sin (rr/2-XO), the implemen-
tation will be very simple.

Division
Division will normally be much slower than multiplication. There
are several ways to perform division. Bit-by-bit division restoring
and nonrestoring algorithms are generally very slow. Another
way is to use several bits at a time division which is faster than
the previous methods. A third way is to multiply the dividend by
the inverse of the divisor. The inverse ofthe divisor can be found
by getting an approximation followed by iterations.

The approximation is again given by the Taylor series:

f(X) = f (XO) + f' (XO) (X-XO) + 1/2 f" (XO) (X-XO)2 + .

and f (XO) = 1/XO
f' (XO) = -lIX02
f" (XO) = 2/X03

Say XO is 8-bits long and the first approximation of the inverse is
found using a 256x8 PLE device. The first approximation can be
obtained by subtracting (X-XO)/(X02). Since the first approxi-
mation is limited by an error of approximately (X-XO)2/X02, and
if XO at least 1, the error is limited by approximately (X-XO)2.
Since XO has an 8-bit resolution, X-XO is represented by the rest
of the bits. The resolution of the second approximation will be
about 16 bits. The third approximation is Similarly deduced and
has a resolution of about 32 bits, and the fourth has a resolution
of about 64 bits.

The inverse thus obtained is then multiplied by the dividend to
give the quotient.

Scaling
In arithmetic operations, scaling is sometimes needed. Scaling
normally involves multiplication or division by a constant. If this
constant can be expressed in 2n where n is an integer, then
scaling is simply shifting. Scaling with other constants may need
a multiplier. A multiplier is more expensive and has a higher pin
count than using a PLE device because the constant that the
operand is to be scaled by is not required as an input as in the
case of a multiplier. This will tremendously reduce the overhead
for data scaling.

Other Applications
Arithmetic look-up are also very useful for arithmetic operations
where conventional binary integral arithmetic is not applicable
-like residue arithmetic, and distributed arithmetic.

TWX: 910-338-2376
2175 Mission College Blvd. Santa Cla,a, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

Monolithic ~~n
Memories U1JnJJ

Fast Arithmetic Look-up

PLE8P8
P5018
4-BIT MULTIPLIER LOOK-UP TABLE
MMI SANTA CLARA, CALIFORNIA
.ADD xO Xl X2 X3 YO Y1 Y2 Y3
.DAT SO Sl S2 S3 S4 S5 S6 S7

PLE CIRCUIT DESIGN SPECIFICATION
VINCENT COLI 12/08/82

:-oPERANDS-
:XXXX YYYY
:3210 3210

PRODUCTS
SSSSSSSS
76543210

LLLL
LLLH
HHBH
HHBH

LLLL
HHHH
LLLH
HHHH

LLLLLLLL
LLLLHHHH
LLLLHHHH
HHHLLLLH

o * 0
1 * 15

15 * 1
15 * 15

THIS PLEBP8 PERFORMS 4-BI'l'LOOK-UP TABLE MULTIPLICATION. THE DEVICE
ACCEPTS TWO 4-BIT OPERANDS (X3-XO AND Y3-YO) TO PRODUCE THE 8-BIT
PRODUCT (S7-S0). THE PLE8P8 ALSO HAS THREE-STATE OUTPUTS WITH TWO
ACTIVE-LOW OUTPUT ENABLE CONTROL PINS (lEI AND /E2) •

X3 X2 Xl XO} TWO 4-BIT
Y3 Y2 Y1 YO OPERANDS

4·BIT MULTIPLIER
LOOK-UP TABLE

PLEaP8

PLE5P8
P5023
ARC TANGENT LOOK-UP TABLE
MMI GMBH MUNICH
.ADD AO A1 A2 A3 A4
.DAT FO F1 F2 F3 F4 F5 F6 F7

FO A1* /A3*/A4
+ A2*/A3
+ AO*/A1* A3*/A4
+ /AO* A1* /A4
+ /AO*/Al* /A3* A4
+ AO* A2
+ A1* A2

PLE CIRCUIT DESIGN SPECIFICATION
PETER ZECHERLE 03/06/84

F1 /A1* A3*/M COMPUTE DIGIT FOR 2EXP-6 (0.015625)
+ AO* /A3* A4
+ A1* /A3* M
+ A2*/A3* A4
+ AO* A1* /A3
+ AO* A2*/A3
+ /AO* A1* A2* /A4
+ AO* /A2* A3*/M

F2 AO* /A3*/A4
+ A1*/A2* /M
+ A3* A4
+ /AO* A2* A3*/A4
+ /Al* A2* A3*/A4

F3 A1*/A2*
+ /A1* A2*
+ /AO*
+ /Al*

/M
/M

A3*/M
A3*/M

F4 /Al* A3*/M
+ AO* A1*/A2* /M
+ A1* A2*/A3*/A4
+ /AO* A3*/A4

F5 AO*/Al* /M
+ A2*/A3*/M
+ /A2* A3*/M
+ /AO* A3*/M

F6 AO*/A1*/A2*/A3
+ AO* A1* A2* A3
+ A4

F7 A1
+ A2
+ A3
+ A4

Fast Arithmetic Look-up

ARC TANGENT LOOK-UP TABLE (cont'd)

FUNCTION TABLE

l----ANGLE---- --------F = ARCTAN (A)--------
INTEGER INTEGER FRACTIONS ---F = ARCTAN(A)---

A4 A3 A2 A1 AO F7 F6 F5 F4 F3 F2 F1 FO 1ANGLE LOOK-UP CALCULATED---
L L L L L L L L L L L L L 0 0.0000 0.0000
L L L L H L H H L L H L L 1 0.7813 0.7854
L L L H L H L L L H H L H 2 1.1016 1.1071
L L H L L H L H L H L L H 4 1. 3203 1. 3258
L L H L H H L H L H H H H 5 1. 3672 1. 3734
L H L L L H L H H H L H L 8 1. 4531 1.4464
H L L L L H H L L L L L H 16 1. 5078 1. 5084
H H H H H H H L L L H L H 31 1. 5391 1. 5385

'nIIS APPLICATION ILLUSTRATES THE CALCULATION OF THE ARC TANGENT FUNCTION USING
A PLE5P8 AS A LOOK-UP TABLE. OTHER TRIGONOMETRIC FUNCTIONS (SUCH AS SINE,
COSINE, COTANGENT, SECANT, COSECANT AND THEIR ARC INVERSE EQUIVALENT FUNCTIONS)
OR HYPERBOLIC FUNCTIONS CAN ALSO BE CONSTRUCTED USING PLE DEVICES AS LOOK-UP TABLES.

WHERE F ARC TANGENT OF A
A = ANGLE IN RADIANS

A PLE)F.:VICE WITH MORE INPUTS, SUCH AS THE PLEllP8, SHOULD BE USED TO CONSTRUCT A
LOOK-UP TABLE WHEN ADDITIONAL ACCURACY IS REQUIRED.

ARCTANGENT
LOOK-UP TABLE

PLE5P8

ANGLE {
IN A

RADIANS
F } ARC TANGENT

OFA

HYPOTENUSE OF A RIGHT TRIANGLE LOOK-UP TABLE
MMI GMBH MUNICH
.ADD AO Al BO Bl B2
.DAT CO Cl C2 C3 C4 C5 C6 C7

CO AO*/B2* Bl
+ /Al* AO* B2*/Bl
+ Al* /B2* BO
+ Al* /B2* Bl
+ Al*/AO* B2*/Bl*/B0
+ Al* AO* Bl* BO
+ AO*/B2* BO

Cl AO* Bl*/BO COMPUTE DIGIT FOR 2EXP-4 (0.0625)
+ /Al* AO* B2
+ Al*/AO*/B2* BO
+ Al*/AO* B2* /BO
+ AO* B2* BO
+ Al* AO* Bl

C2 AO*/B2* BO COMPUTE DIGIT FOR 2EXP-3 (0.125)
+ /Al* AO*/B2* Bl
+ Al*/AO* B2*/Bl
+ Al* AO* B2* Bl
+ Al* /B2*/Bl* BO

C3 = /Al* AO*/B2*/Bl* BO COMPUTE DIGIT FOR 2EXP-2 (0.25)
+ Al*/AO* Bl*/BO
+ Al*/AO* B2
+ Al* B2* BO

C4 Al*/AO*/B2* Bl COMPUTE DIGIT FOR 2EXP-l (0.5)
+ Al* AO* B2*/Bl* BO
+ Al* AO* Bl*/BO

C5 /Al* BO COMPUTE DIGIT FOR 2EXPO (1)
+ AO*/B2*/Bl
+ /AO* Bl* BO
+ B2* BO
+ Al* AO*/B2* /BO
+ Al* AO* /Bl

C6 /Al* Bl COMPUTE DIGIT FOR 2EXPI (2)
+ Al* /B2*/Bl
+ B2* Bl
+ /AO* Bl
+ Bl*/BO

C7 B2 COMPUTE DIGIT FOR 2EXP2 (4) (MSB)
+ Al* AO* Bl* BO

-_._---- ..

;-LENGTH OF SIDES- LENGTH OF THE HYPOTENUSE
;SIDE A SIDE B INTmER FRACTION SIDES LENGTH OF HYPOTENUSE
Al AO B2 Bl BO C7 C6 C5 C4 C3 C2 Cl CO ;A B LOOK-UP CALCULATED---
L L L L L L L L L L L L L 0 0 0.00 0.00
L L L L H L L H L L L L L 0 1 l.00 l.00
L L L H L L H L L L L L L 0 2 2.00 2.00
L L H L L H L L L L L L L 0 4 4.00 4.00
L H L L L L L H L L L L L 1 0 1.00 l.00
H L L L L L H L L L L L L 2 0 l.00 l.00
H L L H L L H L H H L L H 2 2 2.78 2.83
H L H L L H L L L H H H H 2 4 4.47 4.47
H H L H L L H H H L L H H 3 2 3.59 3.61
H H H H H H H H L H H H H 3 7 7.47 7.62---

HYPOTENUSE OF A RIGHT
TRIANGLE LOOK-UP TABLE

HYPOTENUSE OF A RIGHT TRIANGLE LOOK-UP TABLE (conl'd)

DESCRIPTION

THE GENERATION OF COMPLEX ARITHMETIC FUNCTIONS SUCH AS THE PYTHAGOREAN
THEOREM IS GENERALLY VERY DIFFICULT TO IMPLEMENT DIRECTLY IN HARDWARE.
HOWEVER, IMPLEMENTING THE FUNCTION AS A LOOK-UP TABLE USING A PLE GREATLY
SIMPLIFIES THE PROBLEM.

THIS EXAMPLE ILLUSTRATES HOW TO IMPLEMENT A LOOK-UP ~BLE IN A PLESP8 WHICH
CALCULATES THE LENGTH OF THE HYPOTENUSE OF A RIGHT TRIANGLE AS A FUNCTION OF
THE LENGTH OF THE '!WOREMAINING SIDES OF THE TRIANGLE. THE THmREM OF
PATHAGOREAN STATES THAT THE LENGTH OF THE HYPOTENUSE OF A RIGHT TRIANGLE IS
EQUAL 'IOTHE SQUARE ROOT OF THE SUM OF THE SQUARE OF THE OTHER '!WOSIDES OR
C = SQRT(A**2 + B**2). THE INPUTS, "A" AND "B", CORRESPOND 'IOTHE SIDES
ADJACENT 'IOTHE RIGHT ANGLE (I.E. 90 DEGREE ANGLE), WHILE THE OUTPUT, "C",
CORRESPONDS 'IOTHE SIDE OPPOSITE 'IOTHE RIGHT ANGLE WHICH IS CALLED THE
HYPOTENUSE.

WHERE C
A
B

LENGTH OF SIDE C (THE HYPOTENUSE)
LENGTH OF SIDE A
LENGTH OF SIDE B

PLE5P8 PLE CIRCUIT DESIGN SPECIFICATION
P5025 PETER WITTFOTH 06/02/84
PERIMETER OF A CIRCLE LOOK-UP TABLE
MMI GMBH MUNICH
.ADD RO Ri R2 R3 R4
.DAT PO Pi P2 P3 p4 P5 P6 P7

PO /Ri* R2*/R3*/R4
+ /RO*/Ri* R2* /R4
+ Ri* R2* R4
+ Ri*/R2*/R3
+ RO*/Ri*/R2* R3
+ /RO* Ri*/R2
+ Ri*/R2* /R4
+ /Ri*/R2* R4

Pi RO* /R2*/R3
+ /RO* Ri* R2*/R3
+ /RO* /R2* R3
+ RO* R2* R3
+ /RO* R2*/R3* R4
+ RO*/Ri* R2* /R4
+ /Ri* R2* R3*/R4
+ RO* Ri* R3* R4

P2 RO*/Ri* /R3*/R4
+ RO* Ri*/R2*/R3* R4
+ /RO* Ri* R2* R3* R4
+ /RO* Ri*/R2* /R4
+ Ri* R2*/R3*/R4
+ RO* Ri* R3*/R4
+ /RO*/Ri*/R2* R4
+ /Ri* R2*/R3* R4
+ RO*/Ri* R3* R4

P3 = /RO* Ri*/R2* /R4
+ RO*/Ri*/R2* R3
+ RO*/Ri*/R2* R4
+ RO* /R2* R3* R4
+ RO* R2*/R3*/R4
+ /RO* R2* R3*/R4
+ Ri* R2* R3*/R4
+ /RO* R2*/R3* R4
+ Ri* R2*/R3* R4
+ /RO* Ri* R2* R4
+ /RO*/Ri* R2*/R3

P4 = RO* Ri*/R2*/R3
+ Ri*/R2*/R3* R4
+ /RO*/Ri* R2*/R3
+ RO*/Ri* R2*
+ /Ri*/R2*
+ /RO* Ri*
+ Ri* R2*
+ /Ri*
+ /RO*

R3
R3*/R4
R3*/R4
R3* R4
R3* R4

P5 R1* R2*/R3*/R4 ; COMPUTE DIGIT FOR 2EXP5 (32)
+ /R1*/R2* R3*/R4
+ /R2*/R3* R4
+ R1*/R2* R4
+ /R1* R2* R3* R4
+ /RO* R1*/R2* R3
+ /RO*/R1* R2* R4
+ /RO* R2* R3* R4

P6 RO* R1* R3*/R4 COMPUTE DIGIT FOR 2EXP6 (64)
+ /RO*/R1* /R3* R4
+ R2* R3*/R4
+ /R2*/R3* R4
+ RO* R1* R2* R3

R2*
R1* R2*

R4
R4

R3* R4

:---RADIUS----
INTroER

R4 R3 R2 R1 RO

-------PERIMETER-------
MSB INTEGER LSB
P7 P6 P5 P4 P3 P2 PI PO

PERIMETER OF A CIRCLE
LOOK-UP CALCULATED--

L L L L L L L L L L L L L 0 0 0.0
L L L L H L L L L L H H L 1 6 6.3
L L L H L L L L L H H L H 2 13 12.6
L L L H H L L L H L L H H 3 19 18.8
L L H L L L L L H H L L H 4 25 25.1
L H L L L L L H H L L H L 8 50 50.3
H L L L L L H H L L H L H 16 101 100.5
H H H H H H H L L L L H H 31 195 194.8

PERIMETER OF A CIRCLE
LOOK-UP TABLE

PLE5P8

PERIMETER OF A CIRCLE LOOK-UP TABLE (cont'd)

DESCRI PTION

THIS EXAMPLE ILLUSTRATES BOW TO IMPLEMENT A LOOK-UP TABLE IN A PLE5P8 FOR THE
PERIMETER OF A CIRCLE AS A FUNCTION OF THE RADIUS. THE INPUT PINS (R4-RO),
WHICH REPRESENT THE RADIUS OF A CIRCLE, ARE MULTIPLIED BY 2 TIMES PI IN ORDER
TO CALCULATE THE PERIMETER OF A CIRCLE (P7-PO). THIS LOOK-UP TABLE IS VALID
FOR RADII BETWEEN 0 AND 31. A PLE8P8 SHOULD BE USED INSTEAD IF A LARGER
RADIUS RANGE (BETWEEN 0 AND 81) IS REQUIRED.

WHERE P
PI
R

PERIMETER OF THE CIRCLE
3.1415
RADIUS OF THE CIRCLE (BETWEEN 0 AND 31)

P}

PERIMETER
OF THE
CIRCLE

PERIOD OF OSCILLATION FOR A MATHEMATICAL PENDULUM LOOK-UP TABLE
MMI GMBH MUNICH
.ADD LO Ll L2 L3 L4
.DAT TO Tl T2 T3 T4 TS T6 T7

TO = /L4* /L2*/Ll* LO
+ /L3*/L2* Ll*/LO
+ L3*/L2* LO
+ /L4* L2*/Ll*/LO
+ L4* L3* LO
+ L4*/L3* Ll
+ L4*/L3* L2* /LO

Tl /L2* Ll*/LO
+ /L4*/L3* L2* LO
+ /L4* L3*/L2* Ll
+ /L4* L2*/Ll*/LO
+ L4*/L3*/L2* Ll
+ /L3* L2*/Ll
+ L4* L3* /Ll* LO
+ L4* L3* Ll*/LO

T2 = /L4*/L3* Ll*/LO
+ /L4* L3*/L2* LO
+ L4*/L3*/L2*/Ll*/LO
+ L4*/L3* Ll* LO
+ L4* L3*/L2* Ll*/LO
+ L4* L3* L2*/Ll
+ L4* L2* LO
+ /L4*/L3* /Ll* LO
+ /L4*/L3* L2* /LO

T3 = /L4* I,3* Ll* LO
+ L4*/L3* Ll
+ L4* L3* L2*/Ll
+ /L3*/L2*/Ll* LO
+ /L3* L2* Ll* LO
+ L3*/L2* Ll* LO
+ L3* L2*/Ll* LO
+ /L4* L2*/Ll* LO

T4 = /L4*/L3* Ll*/LO
+ /L3* L2* Ll
+ /L4* L3* L2*/Ll
+ L4*/L3* L2
+ L4* L2* Ll
+ L2* Ll*/LO

+ /L4*
+
+
+
+ L4*

/L2*/Ll
L3*
L3*/L2
L3* /Ll
L3

T6 = /L4* /L2* Ll* LO
+ /L4* L3* /LO
+ /L4*/L3* L2
+ /L4*/L3* /Ll

T7 L3* L2* Ll* LO
+ L4

FUNCTION TABLE

l--AMPLITUDE-- --PERIOD OF OSCILLATION--
INTEGER INTEGER FRACTION PERIOD OF OSCILLATION

L4 L3 L2 Ll LO T7 T6 T5 T4 T3 T2 Tl TO 1AMPLITUDE LOOK-UP CALCULATED---L L L L L L L H L L L L L 1 2.0000 2.0050
L L L L H L L H L H H L H 2 2.8125 2.8356
L L L H L L L H H L H H H 3 3.4375 3.4728
L L H L L L H L L L H H H 5 4.4375 4.4834
L H L L L L H H L L L L L 9 6.0000 6.0151
H L L L L H L L L L H L L 17 8.2500 8.2670
H H H H H H L H H L H L H 32 11.3125 11. 3423

PERIOD OF OSCILLATION
FOR A MATHEMATICAL PENDULUM

LOOK-UP TABLE

PERIOD OF OSCILLATION FOR A PENDULUM LOOK-UP TABLE (cont'd)

DESCRIPTION

THIS PLE5P8 IS USED TO IMPLEMENT A LOOK-UP TABLE FOR THE PERIOD OF OSCILLATION
OF A MATHEMATICAL PENDULUM. THE PERIOD OF OSCILLATION FOR MATHEMATICAL
PENDULUM (T) IS DEPENDENT UPON ITS AMPLITUDE OF SWING (L) AND THE ACCELERATION
DUE TO GRAVITY (G). THE PERIOD OF OSCILLATION IS CALCULATED USING THE
FOLLOWING EQUATION:

WHERE T
PI
L
G

PERIOD OF OSCILLATION IN SECONDS
3.14
AMPLITUDE OF SWING IN METERS
ACCELERATION DUE TO GRAVITY IN M/S/S
(9.81 M/S/S)

A PLE DEVICE WITH 5 INPUTS CAN BE USED TO CALCULATE THE PERIOD OF OSCILLATION
FOR AMPLITUDES UP TO L = 32 METERS. PLE DEVICE WITH MORE INPUTS SHOULD BE USED TO
CALCULATE LARGER PERIODS OF OSCILLATION.

THIS EXAMPLE DEMONSTRATES HOW EASY IT IS- TO CONSTRUCT LOOK-UP TABLES FOR
COMPLEX ARITHMETIC FUNCTIONS USING PLE DEVICES

{

PERIOD OF

OF ~~~~~~UM l4. MAT~~~~~~~~~;~~~LUM 8
lOOK-UP TABLE

PERIOD OF
OSCillATION
IN SECONDS

Fast Arithmetic Look-up

PLE12P8
PS017
ARITHMETIC LOGIC UNIT
MMI SANTA CLARA, CALIFORNIA
.ADD A3 A2 A1 AO B3 B2 B1 BO CIN I2 I1 IO
.DAT C3 C2 C1 CO Z v C

PLE CIRCUIT DESIGN SPECIFICATION
FRANK LEE 10/14/83

:**
:* THIS DESIGN IS NOT YET SUPPORTED BY PLEASM *
.**,
C,C3,C2,C1,CO /S2*/Sl* SO*/A3,/A2,/Al,/AO

.+. B3, B2, B1, BO.+. CIN
+ /S2* Sl*/SO* A3, A2, A1, AO

.+./B3,/B2,/B1,/BO.+. CIN
+ /S2* Sl* SO* A3, A2, A1, AO

.+. B3, B2, B1, BO.+. CIN
+ S2*/Sl*/SO*/A3,/A2,/Al,/AO

:*: B3, B2, B1, BO
+ S2*/Sl* SO* A3, A2, A1, AO

+ S2*/Sl* SO* B3, B2, B1,
+ S2* Sl*/SO* A3, A2, A1, AO

* B3, B2, B1, BO
+ S2* Sl* SO

Z /C3*/C2*/C1*/CO
DESCRIPTION

:B - A - 1 + CIN

:A - B - 1 + CIN

:A + B + CIN

:A XOR B

:A + B
BO

:A * B

:PRESET

:OVERFLOW

:ZERO

THIS ALU CAN PERFORM 8 FUNCTIONS ON TWO 4-BIT OPERANDS A (A3-AO) AND
B (B3-BO) WITH CARRYIN (CIN) AND GIVES A 4-BIT RESULT C (C3-CO) WITH
CARRYOUT (C). IT WILL ALSO GIVE STATUS AS OVERFLOW (V) AND ZERO (Z).
THE FUNCTION IS DETERMINED BY A 3-BIT FUNCTION SELECT CODE (S2-S0):

ARITHMETIC LOGIC UNIT
MODE 52 Sl SO FUNCTION PLE12P8----------------------------------

0 0 0 0 CLEAR vcc
1 0 0 1 B - A - 1 + CIN
2 0 1 0 A - B - 1 + CIN
3 0 1 1 A + B + CIN 824 1 0 0 A XOR B
S 1 0 1 A + B
6 1 1 0 A * B E27 1 1 1 PRESET AO

---------------------------------- AND CIN
OR

GATE EiA2 ARRAY
NC

Wallace Tree Compression

Wallace Tree Compression
In performing arithmetic calculations, it may happen that more
than two numbers are to be added together. Adding two numbers
can be achieved by using a simple adder. If there are more than two
numbers to be summed, several levels of adders may be needed.
This often causes too much delay.

An alternative is to use Wallace Tree Compression. Suppose there
are m numbers each of n-bits wide. Summation over these numbers
will rangefromOtomx (2n-1) which will take log2 [m (2n-1) + 1]
bits (rounded UP to the nearest integer). For example, if there
are five 2-bit numbers, i.e., m = 5, and n = 2, the sum will be
bounded by 5 x (22_1) = 15 which will need a total of 4 bits.

One Wallace Tree Compression by itself will not be very useful.
But consider if five 8-bit integers are added together. This tech-
nique enables vertical compression of these numbers in four
groups. This type of vertical compression also eliminates the
need of carry propagation. The five numbers are represented by:

A = (a7, a6, a5, a4, a3, a2, a1, aO)
B = (b7, b6, b5, b4, b3, b2, b1, bO)
C = (c7, c6, c5, c4, c3, c2, c1, cO)
0= (d7, d6, d5, d4, d3, d2, d1, dO)
E = (e7, eG, e5, e4, e3, e2, e1, eO)

where the 7th bits are the most significant; the calculation is as
follows:

The groups are assigned as follows:
G1 : (aO, a1, bO, b1, cO, c1, dO, d1, eO, e1)
G2 : (a2, a3, b2, b3, c2, c3, d2, d3, e2, e3)
G3 : (a4, a5, b4, b5, c4, c5, d4, d5, e4, e5)
G4 : (a6, a7, b6, b7, c6, c7, d6, d7, e6, e7)

The above groups of bits can be compressed to:
H1 : (h13' h12' h11, h10)
H2 : (h23' h22' h21, h20)
H3 : (h33' h32' h31' h30)
H4 : (h43' h42' h41' h40)

G4 G3 G2 G1

a7 a6 a5 a4 a3 a2 a1 aO = A

b7 b6 b5 b4 b3 b2 b1 bO = B

c7 c6 c5 c4 c3 c2 c1 cO = C

d7 d6 d5 d4 d3 d2 d1 dO = 0
+) e7 e6 e5 e4 e3 e2 e1 eO = E

h13 h12 h11 h10 = H1

h23 h22 h21 h20 = H2

h33 h32 h31 h30 = H3

+) h43 h42 h41 h40 = H4

h33 h32 h31 h30 h13 h12 h11 h10

+) h43 h42 h41 h40 h23 h22 h21 h20

S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 SO = result

MonolIthIc m~n
MemorIes InJn.UTWX: 910-338-2376

2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

8-58

81 and 80are just h11 and h10' 810-82 can be obtained through
addition of other bits. The hardware implementation is a follows:

It needs four PLE10P4 devices, two 748381 ALUs and one
748182. An alternative is using ten 748381 ALUs and four
748182 Carry Lookahead Generators.

USING WALLACE USING CONVENTIONAL
TREE COMPRESSION ARITHMETIC LOGIC

Delay (ns) 79 115

Number of components 7 14

Total number pins on the parts 128 264

8ince Wallace tree compression can be of any configuration,
there is no predefined part available. A PLE device provides an
excellent solution. The designer may define his own configura-
tion as long as it can be put in a commercially available PLE
device.

P5019 VINCENT COLI 04/06/83
SEVEN 1-BIT INTEGER ROW PARTIAL PRODUCTS ADDER
MMI SANTA CLARA, CALIFORNIA
.ADD ABC D E F G
.DAT PO P1 P2

PPP
210

COMMENTS
A + B + C + D + E + F + G = P--

L L L L L L L LLL 0 + 0 + 0 + 0 + 0 + 0 + 0 0
L H L H L H L LHH 0 + 1 + 0 + 1 + 0 + 1 + 0 3
H L H L H L H HLL 1 + 0 + 1 + 0 + 1 + 0 + 1 4
H H H H H H H HHH 1 + 1 + 1 + 1 + 1 + 1 + 1 7

THIS PLESP4 PERFORMS PARTIAL PRODUCTS REDUCTION FOR WALLACE TREE
COMPRESSION. SEVEN ROWS OF 1-BIT NUMBERS (A, B, C, D, E, F, AND G)
ARE NUMERICALLY SUMMED TO PRODUCE A 3-BIT RESULT (P2-PO).

P2 pl PO-...-
3-BIT

RESULT

SEVEN
l-BIT

INTEGERS

SEVEN 1-BIT INTEGER ROW
PARTIAL PRODUCTS ADDER

t'L.lHUP4 t' L~ ~.L .lH;U.L T U~::i.L\jN ::it' ~C .L~'.LCA'!'.L UN

PS020 VINCENT COLI 08/22/83
FIVE 2-BIT INTroER ROW PARTIAL PRODUCTS ADDER
MMI SANTA CLARA, CALIFORNIA
.ADD AO Al BO Bl CO Cl DO 01 EO El
.DAT PO PI P2 P3

1M BB CC DO EE
110 10 10 10 10

PPPP
3210

COMMENTS
A + B + C + 0 + E = P

LL LL LL LL LL
LH LR LR LH LR
RL HL HL RL HL
HH HH HH HH HH

LLLL
LRLR
HLRL
HHHH

0+0 + 0 + 0 + 0
1 + 1 + 1 + 1 + 1
2 + 2 + 2 + 2 + 2
3 + 3 + 3 + 3 + 3

THIS PLEI0P4 PERFORMS PARTIAL PRODUCTS REDUCTION FOR WALLACE TREE
COMPRESSION. FIVE ROWS OF 2-BIT NUMBERS (AI-AO, BI-BO, CI-CO,
01-00, AND EI-EO) ARE ~CALLY SUMMED TO PRODUCE A 4-BIT RESULT
(P3-PO)•

AlAO}Bl BO FIVE
Cl CO 2-BIT
01 DO INTEGERS

El EO
FIVE 2-BIT INTEGER ROW

PARTIAL PRODUCTS ADDER

PLE10P4

PLE12P8
P5021
FOOR 3-BIT INTEXiER ROW PARTIAL PRODUCTS ADDER
MMI SANTA CLARA, CALIFORNIA
.ADD AO Al A2 BO Bl B2 CO Cl C2 DO 01 02
.DAT PO PI P2 P3 P4

PLE CIRCUIT DESIGN SPECIFICATION
VINCENT COLI 02/10/83

FUNCTION TABLE

A2 Al AO B2 Bl BO C2 Cl CO 02 01 DO P4 P3 P2 PI PO

;AAA BBB CCC ODD PPPPP COMMENTS
;210 210 210 210 43210 A + B + C + 0 = P--
LLL LLL LLL LLL LLLLL 0 + 0 + 0 + 0 0
LLH LLH LLH LLH LLHLL 1 + 1 + 1 + 1 4
LHL LHL LHL LHL LHLLL 2 + 2 + 2 + 2 8
LHH LHH LHH LHH LHHLL 3 + 3 + 3 + 3 12
HLL HLL HLL HLL HLLLL 4 + 4 + 4 + 4 16
HHH HHH HHH HHH HHHLL 7 + 7 + 7 + 7 28--

THIS PLEl2P8 PERFORMS PARTIAL PRODUCTS REDUCTION FOR WALLACE TREE
COMPRESSION. FOUR ROWS OF 3-BIT NUMBERS (A2-AO, B2-BO, C2-CO, AND
02-00) ARE NUMERICALLY SUMMED TO PRODUCE A 5-BIT RESULT (P4-PO).

A2 Al AO }B2 Bl BO FOUR

C2 Cl CO IN':;'~~RS
+ 02 01 DO---------------

FOUR 3-BIT INTEGER ROW
PARTIAL PRODUCTS ADDER

PLE12P8

AND
OR

GATE
ARRAY

PLE CIRCUIT DESIGN SPECIFICATION
VINCENT COLI 08/10/83

PLE12P8
P5022
THREE 4-BIT INTEX>ER ROW PARTIAL PRODUCTS ADDER
MMI SANTA CLARA, CALIFORNIA
.ADD AO Al A2 A3 BO Bl B2 B3 CO Cl C2 C3
.DAT PO Pl P2 P3 P4 P5

FUNCTION TABLE

A3 A2 Al AO B3 B2 Bl BO C3 C2 Cl CO P5 P4 P3 P2 Pl PO

:AAAA BBBB CCCC PPPPPP COMMENTS
:3210 3210 3210 543210 A + B + C P--
LLLL LLLL LLLL LLLLLL 0 + 0 + 0 0
LLLH LLLH LLLH LLLLHH 1 + 1 + 1 3
LLHL LLHL LLHL LLLHHL 2 + 2 + 2 6
LHLL LHLL LHLL LLHHLL 4 + 4 + 4 12
HLLL HLLL HLLL LHHLLL 8 + 8 + 8 24
HHHH HHHH HHHH HLHHLH 15 + 15 + 15 = 45--

THIS PLE12P8 PERFORMS PARTIAL PRODUCTS REDUCTION FOR WALLACE TREE
COMPRESSION. THREE ROWS OF 4-BIT NUMBERS (A3-AO, B3-BO, AND C3-CO)
ARE NUMERICALLY SUMMED TO PRODUCE A 6-BIT RESULT (P5-PO).

THREE 4-BIT INTEGER ROW
PARTIAL PRODUCTS ADDERA3 A2 Al AO } THREE

B3 B2 Bl BO 4·BIT
C3 C2 Cl CO INTEGERS

,P5 P4 P3 P2 Pl PO
J

6·BIT
RESULT

CO

Cl

C2

E1
AND C3
DR

GATE E2ARRAY
NC

P5

P4

P3

Residue Arithmetic using PLE Devices

Residue Arithmetic using PLE Devices
Conventional binary arithmetic can be replaced by another kind
of computational methodology known as the Residue Number
System. The use of this system allows integer arithmetic to be
performed by arrays of PLE devices. The idea of PLE devices as
arithmetic elements is simply to store pre-computed values of
the arithmetic operation in the PLE memory cells and to use the
input variables to the arithmetic as addresses to the PLE devices.
Since we are computing the results of the arithmetic operations,
the same PLE device organization may be used for many
different functions As an example, a 256x8-bit PLE device can
be used as a 4x4-bit binary multiplier, or a 4+4-bit binary adder
with the output multiplied by any 3-bit constant. It is this
flexibility which holds so much appeal forthe use of PLEdevices
as computational elements.

Arithmetic operations often involve carry propagation. This prop-
agation causes too much delay for high-speed arithmetic. The
Residue Number System (RNS) provides the re'quired separa-
tion property needed for high-speed arithmetic. Each digit of the
RNS representation is coded into a certain number of bits. In per-
forming the basic operations of addition, subtraction, and multi-
plication, no information is required to be passed between the
digits. Therefore, the number of bits required for representing
each digit can be partitioned so that commercially available PLE
devices can be used to implement the arithmetic.

Basics of the Residue Number System
In this section, the elements of performing arithmetic using the
RNS are introduced. The mechanism of coding numbers, the
method of performing arithmetic using the RNS, and finally
conversion between binary and RNS are presented.

Coding of Residue Numbers
In principle, the coding of Residue Numbers is extremely simple.
A residue digit is the remainder when the number to be coded is
divided by another number (a modUlUS). As an example, the
residue of 15 divided by a modulus 7 which yields 1 as the
remainder can be represented by 11517 = 1.

If operations are performed on an RNS where only one modulus
is used, it will not be advantageous against a simple binary scheme
at all since no information is encoded. Only the encoding of the
binary numbers will provide the separation property which will
speed up the arithmetic operation. The advantage of the RNS
accrues when more digits are used.

Another example of encoding a number using 3 moduli togive a
3-digit RNS representation isas follows: lelthe moduli be ml = 3,
m2 = 4, m3 = 5. The residues of X = 25will be shown as xi where
i = 1,2,3. Thus,

Xl = 1251ml = 12513 = 1
X2= 1251m2= 12514= 1
X3= 1251 m3= 12515= a

In the RNS using the moduli 3, 4, 5, the number 25 is represented
as (1, 1, 0).

The number of unique representations for a set of moduli is the
Least Common Mulitple (LCM) of the moduli. The most efficient
set of moduli is one in which all moduli are pairwise relatively
prime.

Tables 1 illustrates an example ofa set of moduli (3,4) which can
represent 12 integers. Note thalthe representations of a and 12 are
the same, since the representation repeats itself after 12 integers.

X
(3) (4)
x1 x2

a a a
1 1 1

2 2 2

3 a 3

4 1 a
5 2 1

6 a 2

7 1 3

8 2 a
9 a 1

10 1 2

11 2 3

12 a a

Table 1. Representation of 0 to 12 in RNS Using Moduli 3 and
4. The Representation Repeats Itself After 121ntergers

In table 2, (4,6) is the set of moduli uses. Since 4 and 6 are not
relatively prime, the number of integers that can be represented is
nolthe product of 4and 6, but instead is the LCM of 4and 6 which
is 12. The representation again repeats itself once every 12
integers.

Monolithic m'~11
Memories InJlUJTWX: 910-338-2376

2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

8·64

Residue Arithmetic Using PLE Devices

X
(3) (4)
xl x2

0 0 0

1 1 1

2 2 2

3 3 3

4 0 4

5 1 5

6 2 0

7 3 1

8 0 2

9 1 3

10 2 4

11 3 5

12 0 0

13 1 1

14 2 2

15 3 3

16 0 4

17 1 5

18 2 0

19 3 1

20 0 2

21 1 3

22 2 4

23 3 5

24 0 0

Table 2. Representation of Ox24 for Moduli 4 and 6. Since 4
and 6 are Not Relatively Prime, and Their LCM is Only
12, the Representation Again Repeats Itself Every 12
Integers

Negative numbers are formed in the same way negative numbers
are formed in binary (two's complement) system. To form the
two's complement of a number in binary, we subtract the
number 28 where 8 is the number of bits of the representation.
In RNS, we subtract the RNS number from mi to form the
negative. Table 1 can be rewritten as in table 3 for encoding of
negative numbers.

X
(3) (4)
xl x2

0 0 0

1 1 1

2 2 2

3 0 3

4 1 0

5 2 1

-6 0 2

-5 1 3

-4 2 0

-3 0 1

-2 1 2

-1 2 3

Arithmetic Using the RNS
For two RNS numbers, X and Y, the result ofthe addition ofthe two
numbers, Z, in RNS is given by:

Ixi + yilmi = zi for all ofthe RNS digits.
The same result is found for subtraction and multiplication. This
means that arithmetic can be carried out between the same digits
ofthetwo numbers, Xand Y, without interaction between adjacent
digits. The arithmetic is therefore "carry-free". As an example, let
us consider the following computation:

Z = (863 x 3942) + (-862 x 3942) = 3942
We only need sufficient dynamic range to represent the result;
intermediate overflows can be ignored. Let us choose the
following moduli for the RNS representation:

m1=7,m2=9,m3= 11,m4= 13
M = 9009

The above set can represent numbers in the range -4505 to 4504,
and so this number range is sufficient for the calculation of this
example. The computation is shown in table 4.

X
(7) (9) (11) (13)
xl x2 x3 x4

3942 1 0 4 3

863 2 8 5 5

862 1 7 4 4

-862 6 2 7 9

863 x 3942 2 0 9 2

-862 x 3942 6 0 6 1

Z 1 0 4 3 = 3942

Division of residue numbers is more complicated than addition,
subtraction, or mUltiplication. lithe dividend is exactly divisible by
the divisor, the operation is easier. In this case, a division by a
number is the same as a multiplication by the inverse of that
number. The multiplication inverse of an integer X in moduloarith-
meticcan be found by finding the vector (d1, ... ,dn) which sat-
isfies the following:

IX.dilmi = 1
Forexample, 95 divided by 5 in moduli 2, 7 and 9 can be done by
first finding the vectors representing 95 and the inverse of 5.

19512 = 1

19517 = 4

19519 = 5
So, for the mUltiplicative inverse of 5, we have:

11/512=1 15x112=1

11/517 = 3 since 15 x 317 = 1

111519= 2 15x219= 1

Therefore, 195/512 = 119512x 11/51212 = 11 x 112 = 1

195/517 = 119517x 11/51717 = 14x 317 = 5

195/519 = 119519x11/51919 = 15x 219 = 1

and the answer is 19.

The operation becomes more complicated when the dividend is
not exactly divisible bythedivisoror one of the moduli of the multi-
plicative inverse does not exist, say, if the residue olthe divisor for
that modulus is O. In this case, we need to obtain the remainder
and then subtract the remainder from the dividend and then per-
form the division. The problem in finding the remainder seems to
be the same as performing the division itself. However, this type
of division can be done in a process called scaling, which wi II not
be discussed in detail in this paper.

In spite olthe improvements made in implementing scaling algo-
rithms, scaling still represents a major effort in any calculation. It
is advisable to use RNS only on systems where many arithmetic
operations can be performed for each scaling operation.

A System Using an RNS
An RNS is very useful in systems which have predefined opera-
tions and dynamic ranges. Moreover, it can only operate on
integers, or at most, block floating-point numbers. Since the
RNS involves conversions between integers and their RNS
representations, and conversions by themselves are already
time-consuming, the problem to be solved in the RNS system
should be operation intensive.

Conversion to RNS Representation
The conversion of an integer to RNS can be viewed as a mapping
process. PLE devices provide a natural implementation for

nU~bers ranging fr~m 0 to 255, and the f~II~~i~g-~~~li-;~~
arbitrarily chosen for conversion to RNS - 2,11 and 15 (Which
can represent 330 integers), 8 bits of address are needed for the
integer input and 9 outputs (1 for modulus 2, 4 for modulus 11
and 4 for modulus 15). In reality, only 8 outputs are needed
because that bit of residue for modulus 2 is not required, since
the least significant bit of the integer is also the residue of itself in
modulus. In fact, a PLE8P8 will be sufficient.

4

X 1 / ~~_P_L_E_8_P8 __ ~ :::~~

~ ~IXI2

Figure 2. Mapping an 8-Blt Integer, X, to Its Residues on
Moduli 2, 11and 15

Another example is a 14-bit integer which is to be converted to
RNS. A 14-bit address needs 16K address spaces for the
mapping. 16K is too deep for a PLE device. An alternative is to
use 4K-deep PLE devices. PLE12P4 and PLE12P8 devices and a
selector (e.g., a PLE5P8 to control the PLE devices (See
Figure 3)). The PLE5P8 device will decode two of the address
bits and will selectively enable one of the four sets of PLE devices
as the mapping set, thus deepening the effective address to 16K.

Xjl

Figure 3. Mapping a 14-Bit Integer, X, to Its Residues by
Selectively Enabling the Outputs of One of the Four
Setsof 12-lnput PLE Devices

This method of expansion is not effective with bigger integers. If
the integer is N-bit and the PLE address space available is M-bit,
then 2N-Msets of PLE devices will be needed. Besides, as the
dynamic range increases, the width of the outputs will also
increase about proportionally. An alternative method is to use
two or more levels of PLE devices to generate the residues. The
first level generates the remainders from the more significant
bits of the integer and the products of some of the moduli. These
remainders are in turns concatenated with the rest of the bits to
become the inputs to the second level PLE devices.

For example, for a 16-bit integer 43689, and let us use (2, 11,13,
15,23) as the set of moduli. We may choose 23,30and 143as the
mod ul i for the fi rst level. The first level consists of PLE12P4s and
PLE12P8s which generate the remainders ofthe most significant
12 bits of 43689 which is 2730. We know thatl2730123 will be at
most 22 and can therefore be represented by a 5-bit number;
12730115 will be at most 14 and can be represented by another
4-bit number; and 127301143 will be at most 142 and can be
represented by a 6-bit number. The 5-bit number represented by
12730123 will be concatenated with the least significant 4 bits of
the integer and gives a 9-bit number which can perform another
division by 23 to give the final 143689123; the 4-bit number
represented by 12730115 will be concatenated with the least
significant 4 bits of the integer and gives an 8-bit number which
can perform another division by 15 to give the final!43689115; the
6-bit number represented by !27301143 will be concatenated
with the least siginificant 4 bits of the integer and gives a 10-bit
number which can perform another division by 11 and 13 to give
the final 143689!11 and 143689113' As in the first example,
14368912 is just the least significant bit of the integer.

I FIRST I I~ECONtL..1
--LEVEL- LEVEL

I PLE8P4 rlXl15

16 12 4 PLE12P4s I r
lXI23IXI or PLE9PS

2PLE12P8s 46 I r1X111'PLE10PS
IXI13

4
IXI2

Figure 4. Mapping a 16-Bit Integer X to Residues in Modulo 2.
11,13,15, and 23 Using Two-Level Mapping. The
First Level Gives Remainders from the More Signif-
icant Twelve Bits, While the Second Level Finds the
Final Residues

In some circumstances, although an N-bit integer only has a
dynamic range of2N, the intermediate calculations may over-
flow. It is sometimes necessary to add some other moduli to
boost up the dynamic range for the intermediate calculations.

Arithmetic Operations In RNS
The arithmetic operations of the RNS is different from regular
arithmetic in that even simple addition must be performed in
modulo arithmetic. Simple ALU may not be able to handle this
arithmetic. Again, PLE devices are proven to be most useful. A
PLE8P4 device can perform addition, subtraction, or mUltipli-
cation on two 4-bit residue numbers and give a 4-bit modulo
result. 4: ;:

4

Figure 5. Calculating C = A + B, A - B, B - A, or A x BUsing
PLE8P4

If the modulus is large, say greater than 64, the combined
number of bits for two residues will be greater than the number
of address bits for the largest of the commercially available PLE
device. Of course, more than one device can be used to deepen
the effective address space. In this case, for every additional bit
of a modulus, two more bits of address will be needed - one for
each operand. In other words, for each additional bit of a
modulus the address space of operation will be quadrupled. It is
not very effective when the modulus grows too large. Fortunately,
for both addition and multiplication, there are more efficient
procedures.

Large Modulus Addition
Table 5 shows the contents required for the addition operations
in modulus 11. There is a lot of redundancy in the table which can
be compressed by reducing what should beeight bits of inputs to
five bits. What we need is just another level of mapping. There
are a total of 121 combinations for a number of modulus 11
operating on another operand of the same modulus. In reality,
only numbers ranging from 0 to 10 can be represented in
modulus 11. The sum ranges from 0 to 20 (not in modulus 11).
This range can be represented by a new set of submoduli (3, 7)
which is five bits wide. In fact, any new set of submoduli which
has a dynamic range of at least twenty-one can be used. The
operands in modulus 11 will be converted to their representations
in submoduli 3 and 7. Theaddition is done in the submoduli and
the result is reconverted back to modulus 11 RNS (see Table 6).

x11

f
0 1 2 3 4 5 6 7 8 9 10

0 0 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10 0

2 2 3 4 5 6 7 8 9 10 0 1

3 3 4 5 6 7 8 9 10 0 1 2

4 4 5 6 7 8 9 10 0 1 2 3

5 5 6 7 8 9 10 0 1 2 3 4

6 6 7 8 9 10 0 1 2 3 4 5

7 7 8 9 10 0 1 2 3 4 5 6

8 8 9 10 0 1 2 3 4 5 6 7

9 9 10 0 1 2 3 4 5 6 7 8

10 10 0 1 2 3 4 5 6 7 8 9

x+y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ix +ylll 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9

Ix +y17 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

Ix +y13 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Large Modulus Multiplication
The solution to this problem in multiplication is similar. For exam-
pie, if two RNS digits in modulus 91 is to be multiplied, (7, 13) may
be chosen as a set of submoduli. The representation of an RNS
digit in modulus 91 needs 7-bits. These 7-bits are first mapped to
two RNSdigits - in modulo 7 which needs 3-bits; and in modulo
13 which needs 4-bits. The representations of the two operands in
the two moduli can then bemultiplied and give the result in modulo
7 and modulo 13. The result is then converted back to modulo 91.
Unfortunately, this scheme can be used only when the modulus
can be expressed as a product to two integers which are relatively
prime. But, in this case, the RNSdigit may simply be represented
as the residue of the two smaller integers instead of using them as
submoduli.

Figure 7. Calculating Multiplication of Two Numbers in Modulo
91 Using Submoduli Operations

Suppose another modulus 101 is used. 101 is a prime number
and RNSin modulus 101 ranges from Oto 100. The real dynamic
range of the product of two numbers in modulus 101 is 0 to
,OOסס1 which is already too large for a PLE address space. For
this modulus, we may use three 4 K-deep PLEdevices to deepen
the address space. For a modulus like 1001, it may not be too
efficient to use this scheme. Instead, since:

xy = [(x + y)2 - (x - y)2] 14
or = [x + Y)~J 14 - [(x - y)2] 14

wemaydox + yandx - yfirstandthendothesquaringofthesum
and the difference scaled by a factor of 4. Since the final product
of two integers must be an integer, the squaring and scaling may
be performed in one operation with the fractional part discarded.
The way to obtain x + y and x - y is the same as what was dis-
cussed earlier in the "Large Modulo Addition" session.

In any event, operations on residues of large moduli are slower
and involve more hardware and are not recommended.

Figure 8. Performing Modulo 1001 Multiplication

The Reverse Conversion
The reverse mapping from RNS to integer is not as straight-
forward as the other way. For an RNS system which has a total of
twelve bits for all the residues, we can still use 12-input PLE
devices to convert. We may also use several sets of 12-input PLE
devices to reverse map the RNS if the integer is not much longer.
But for very long integers, we may need to use the general
algorithm for the reverse map:

1. FindM = ml xm2x ... xmn_l (wheren isthe number
of moduli)

2. Find ti = MImi
3. Find X = Ix1tl + x2t2 + ... + xn-1tn-lIM

In hardware implementation, ti's are all known beforehand, We
can map xi's to get the xiti's. Then we may perform Wallace Tree
Compression (see the session on this subject in this handbook
for more information) on the xiti's to give two-level operands
which add to the final sum and divide it by M to get X. Again, PLE
devices provide the best solution for Wallace Tree Compression.

____ I---+- XlllXl 7
/ ·1 PLEs

Xn 7
/ ·1 PLEs

xxxxxxxxxxxxxxx
wwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwww

Figure 9b. Modulo M Wallace Tree Compression to Reduce the
Number of Levels for Summation to 2 Followed by an
Addition and Division to get X = IXltl + ... + xntnl M

Residue Arithmetic Using PLE Circuits

Conclusion
Memory elements provide excellent solutions to mapping func-
tions - for control purposes, for arithmetic operations and
general logic replacements. This paper investigates the possi-
bility of using PLE devices as arithmetic units. In fact, for logic
like residue number arithmetic, there is no better solution than to
use these devices.

Acknowledgement
Portions of this article were extracted from "Integer Arithmetic
Using PROMs" by Dr. G. A. Jullien of the University of Wind-
sor, Canada.

Distributed Arithmetic Using PLETM
Devices

Distributed Arithmetic Using PLE
Devices

In digital signal processing, sum-of-product type of operations
are often n~essary. These operations take the form of:

y = 1 aixi where aI's are some constants
i= 1

If real multiplications are to be performed on every product term,
it will need a total of M multiplications and M-1 additions. Multi-
plication operations normally take much longer than simple addi-
tion. An alternative to calculate equations of the above form is by
using distributed arithmetic.

Suppose there is an N-bit integer X given by:

x = [x(N-1). x(N-2), ... ,x (1), x (0)]

or equivalently:
N-1

x = 1 xUl2j
j = 0

where x(N-1) is the most significant bit. The equation:

M
y = 1 aixi

i = 0

can be expressed as:

M
y= 1

i= 1
N-1

= 1
j = 0

M
H (j) = 1 aixi (j)

i = 1

Since H (j) is independent of i and since a1's are all constants, we
precomputeforeveryx(j) = [x1 (j),x2(j),··· ,xM(j)]thevalues
of H (j).Then x (j) can be used as the address of PLE devices
whose outputs are the precomputed result H (j).

X1(J),.··, XM(J)4 __ M_A~_IN_G~~ L-BITRESULT

Figure 1. Mapping the ith Bit from Each of the XI'S to An L-bit
Result

If there are M bits of data and the result is L-bit wide, and if Mis
very large, say 20, and L is 8, then we need 20 bits of address
lines if we want to use only PLE mapping. Since20 bits of address
translate to 1M words, and there is no available 1M-deep
PLE device on the market, it is not realistic to use PLE mapping.
Instead, H (j) can be partitioned as follows:

H (j) = 10
aixi (j) for M = 20

i= 1
-10 (j 20

= 1 aixi) + 1
i = 1 i = 11

the 2D-bit address can be separated to two 1D-bit addresses and
each ofthem is individually mapped. The two outputs will then be
added together to give H (J). An implementation of this mapping
is shown in figure 2.

10

X!(J) 10

X1~(J)
H(J)

X11(J) 10

X20(J)

Figure 2. Mapping the ith Bit of Each of XI'S to an L-bit Result
When There Are Too Many x's (20 in This Case)

There is another alternative for implementing a sum-of-product
operation: by using a mUltiplier accumulator (MAC).

The main constraint on distributed arithmetic is that one set of
the multiplicands must be fixed, i.e. ai's in this case, for the
sum-of-product mapping while a MAC will allow flexibility.

There are normally some constraints on the width forthe data bus
from which the operands are loaded. If all the operands are new,
it will need M cycles to load in the operands anyway, distributed
arithmetic offers no advantages over MAC since distributed
arithmetic needs to wait for all the operands to be loaded in
before any operation can start while MAC can perform a
mUltiplication and an addition every cycle. M cycles will be
needed anyway for the complete operation using a MAC while
distributed arithmetic may take even longer.

On the other hand, for operations like convolutions where one
set of operands are fixed and only one new variable operand is
needed for every result, distributed arithmetic will be a better
solution since it can give a result in every clock-eycle while a
MAC will need M-eycles (because recalculations of all the
product terms are necessary). An implementation for convolu-
tion is shown in Figure 3.

MonolIthIc ~T!n
MemorIes IlUnJJTWX: 910-338-2376

2175 Mission College Blvd. Sente Clere, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

8·70

Figure 3. An Implementation of a Distributed Arithmetic System
for Convolution

There is another way to implement distributed arithmetic
through bit-serialization:

From H (j), the sum-of-product of y can be obtained as:

N-1

y = L 2j H (j)
j = 0

To implement this equation, consider that the least significant bit
of the result is to be used only for rounding purposes only. Only
the more significant bits will be retained. Thecomputation can be
performed in the following way:

1) For j = 0,
Yo = 20 H (0) = H (0)

2) For j = 1 to N-1
Yj = H OJ + 1/2 H 0-1)

Note that the second term of the last equation means that the pre-
vious result (Yj-1) is shifted right one-bit; the last bit of Yj-1 is
truncated.

The implementation of such a system is shown in Figure 3. The
system consists of a shift register, a mapper (PLE circuits, or PLE
circuits with adders), an accumulator, and an ALU.

Figure 4. A Bit-Serialization Implementation for a Distributed
Arithmetic System

The operations are as follows:
1) Load xi onto the load and shift register at clock O.
2) Load H (0) onto accumulator and shift all registers at clock 1.
3) From clock k (between clock 2 to clock N-1), the content olthe

accumulator will be replaced by the sum of H (k-1) and the
more significant N-1 bits of the current accumulator value.

4) For clock N, the following are performed:
a) Repeat step 3. At the end olthe operation, the accumulator

contains the value of the result (scaled by the number of
shifts).

b) Xi + 1 is loaded onto the load and shift register.
The shifting frequency is equal to N times the basic rate.

Due to the fact that there are a number of shift operations
necessary for each data load, this method is recommended for
the following conditions:

1) This design is under cost, power dissipation, and board space
constraints.

2) This design is for high M-to-N-ratio array multiplications.

Registered PLE Devices in
Pipelined Arithmetic
PLE devices are useful as logic elements, and registered PLEs
are excellent media for pi peli ned arithmetic. Monolithic Memories
supplies a number of registered PLE devices which provide
effective solutions to pipelined systems.

A data processing system may have fall-through architecture.
Since many of these operations may takea long time, it happens
that the devices are not often tied up in operations. For example,
in a system as in figure 1, the operations can be divided into three
functional blocks. When the operands are loaded in, block 1 will
operate first, followed by block 2 and then by block 3. When the
data is in block 2, block 1 is not doing anything. We cannotat this
time put in the next set of operands because changes in
operands may disturb the operation in block 2.

-,--
tpd(blk 1)-+-
tpd(blk2)

+tpd(blk 3)---.L
Figure 1, An Example of the Fall-Through Approach to Arith-

metic Operation

A solution to this is by registering the operands and signal paths
when the operations is switched to block 2; and by registering
the operands and signal paths again when the operations is
carried out in block 3. The result is stated in figure 2. This archi-
tecture is called the pipelined structure. It makes the loading of
the second set of operands possible even before the first result
is out, thus increasing the throughput.

BLOCK 1

REGISTER

BLOCK 2

REGISTER

BLOCK 3

The introduction of the registers for the pipeline increases the
operation time of every block due to the addition oflhe setup times
and the clock to output delays. The result is as follows:

1) Overall delay. Thearchitecture in Figure 2 will need at least an
additional 2 setup time and 2 clock to output delays of a regis-
ter. In real, it will be more, because the minimum clock period
will be determined by the sum of (i) the maximum oflhe opera-
tion times of individual blocks, and (ii) the setup time of the
pipelined registers and (iii) the clock to output delay of the
pipelined registers. Symbolically, the overall delays for the
architectures in Figures 1 and 2 are:

tpd (Fig. 1) = tpd (blk 1) + tpd (blk 2) + tpd (blk 3)

tpd (Fig. 2) = 2 x{ max[tpd (blk 1), tpd (blk 2), tpd (blk 3)]

+ 'su + tClk} + tpd (blk 3)

Where tpd (Fig. 1) and tpd (Fig. 2) are the propagation delays
of the architectures in figure 1 and figure 2 respectively; tpd (blk
1) tpd (blk 2), tpd (blk 3) are the propagation delays of block 1,
block 2, and block 3 respectively; and tsu and tclk are the setup
time and clock-te-output delay of the registers respectively.

2) Throughputs of clock rate. The architecture in figure 1 has a
throughput period of (tpd (blk 1) + tpd (blk 2) + tpd (blk 3) +
tsu + tclk), assuming that the operands are coming from and
the result is going to some registers; the architecture in
Figure2 has a throughput period of (max[tpd (blk 1), tpd (blk
2), tpd (blk 3)] + tsu + tclk) which is faster.

PLE devices are useful as logic elements, and registered PLE
devices are excellent media for pipelined arithmetic. Monolithic
Memories supplies a number of registered PLE devices which
provide effective solutions to pipelined systems.

Applications for pipeline arithmetic include array and digital
signal processing.

Monolithic mT!ft
Memories InJl1JJTWX: 910-338-2376

2175 Mission College Boulevard, Santa Clara, CA 95054 Tel: (408) 970-9700 TWX: 910-338-2374

8-72

PAL® Device Introduction

PAL/HAL® Device Specifications

PAL Device Appiicatlons

Logic Tutorial

PALASM® Software Syntax

PLETMCircuit Introduction

PLE Circuit Specifications

Article Reprints
Table of Contents for Section 9•..•........................ 9-2
Testing Your PAL Devices•.............•.................. 9-3
PAL20RA10 Design for Testability 9-8
PAL Design Function and Test Vectors 9-10
Metastability 9-13
Fast 64x64 Multiplication Using 16x16 Flow-Through MUltiplier

and Wallace Trees 9-17
High-Speed PROMs with On-Chip Registers and Diagnostics•........... 9-29
Diagnostic Devices and Algorithms for Testing Digital Systems 9-41
A Copiler for Programmable Logic in FORTH 9-53
High-Speed Bipolar PROMs Find New Applications as

Programmable Logic Elements 9-62
ABEL'· a Complete Design Tool for Programmable Logic•..•..... 9-69
CUPL'· the Universal Compiler for Programmable Logic 9-73

Testing Your PAL Devices

Introduction
The advantage of Programmable Array Logic (PAL®) circuits
as a basic bUilding block of digital system is now well established.

PAL circuits are a unified group of devices which combine
programmable flexibility with high speed and extensive selec-
tion of interface options.

The architecture of PAL circuits consists of programmable-
AND-OR gate arrays, output-registers and I/O feedback as
shown in Figure 1.

The increased system speed, reduced chip count and availability
of a CAD tool called PALASM'· software should leave no doubt
for design engineers that they have made a right choice in
choosing PAL circuits.

The HAL circuit family is the masked program version of a PAL
circuit. HAL® circuits will provide the users a cost-effective
solution for large quantities and is unique in that it is a gate
array with a programmable prototype.

The following steps are required when designing with PAL
circuits.

• Familiarity with Demorgan's law.

• Familiarity with the Karnaugh maps.

• Ability to express logic equation in Sum-of-Product form.

• Ability to write simple seed vector for function table.

• Familiarity with different PAL circuits.

Programming PAL Circuits
PAL circuits will be programmed using PALASM software.

PALASM software is the CAD tool developed by Monolithic
Memories to facilitate the process of programming. PALASM
software is a Fortran IV program which assembles and sim-
ulates PAL circuits design specifications. It generates PAL cir-
cuit fuse patterns in formats compatible with PAL circuits or
PROM programmers.

Besides generating PAL circuit fuse pattern in different pro-

gramming formats, PALASM software does the following:

• Assembles PAL circuit design specification and reports
error messages.

• Simulates the Function Table.

• Tests each product term for Stuck at zero (SAO) and
stuck at one (SA 1) faults.

The purpose of writing vectors is to prove that a device is capa-
ble of performing it's function before it is put in a system.
PALASM software will exercise the vectors and will report any
discrepancy. Writing vectors will raise confidence that a device
will function properly at least in the design level. The simulator
also transfers the function table vectors to a set of universal test
vectors which may be used for functional testing after the
device is programmed.

When a new system is transferred to production, the system
designer hands over the responsibility for the system to the test
engineering department. who now determines how and what
test should be performed to ensure proper operation of the
system. At this point the system designer transmits the neces-
sary information for understanding the system operation.
Unfortunately, much information is lost at this point. Test engi-
neers usually have a hard time understanding how the system
works with insufficient information. It is the design engineer
who best knows the operation of his PAL circuit design, and it
is the design engineer who can quickly specify a few seed
vectors to give the test a starting point in solving the future
problem.

Design for Testability
In short the only way to control a digital circuit is to apply a
known value to it's input. Fault simulation has been the best
technique of yielding a quantitive measure of test effectiveness.
Fault simulation will test stuck-at-O (SAO) and stuck-at-1 (SA 1)
of input and output lines. By generating test vectors that will
test for each product term for (SAO) and (SA 1) faults, then by
obserVing the corresponding output and comparing it with the
fault-free output, one can conclude whether a fault can be
detected or not.

Consider the following example:

A~®g ®
o
E
F <D

Pl~®
P2~

Figure 2. logic Diagram and It', PAL Circuit Implementation

ABCDEFZ
1 1 1 0 X X 1

The (vector-1) selects a product term P1. Under a fault-free
condition, the output (2) will be high (we can observe this);
however, under a fault condition the output will be low. In other
words, one can conclude that either product term (P1) is (SAD)
or outputs Z (Figure 2.) are (SAD).
Now consider vector 2.

ABCDEFG
0000000

As it can be seen that both of the product terms are low, if the
observed output is high, one can conclude that either product
terms or outputs are Stuck-at-one.
Fault simulation grading is used by Monolithic Memories to
evaluate candidates design for transfering from a PAL circuit to
a HAL circuit.
In designing with PAL circuits, four different cases should be
considered.

1. A purely combinational circuit where output is function
of input.

2. A purely combinational circuit where output is function
of input and feedback from output.

3. A purely sequential logic where output is function of
input and feedback from output.

4. A combinational-sequential logic where output is func-
tion of input, feedback from combinational output and
feedback from sequential output.

In cases 1 and 2 we can define a structured way of writing
function table. Cases 3 and 4, on the other hand, because of
dependency of the device on the previous state of the device,
impose a relatively more sophisticated scheme of testing
strategy.
In the following examples the various techniques which might
be helpful in testability of PAls, will be discussed.

Example 1: Glitch·free and Testable
Suppose we want to implement (EQ-1) using any of the combi-
national PAL.

x~
A F
B 2

The above logic is testable because we have full control over
each node for (SAD)and (SA1) test.

x X A B

~,

Ideally the output should always be high if both inputs are high.
The circuit is not glitch-free, the output might momentarily
drop to low if we change the state of X, due to propagation
delay between X and X.
The problem will be solved by including a redundant (AB) term
to (eq-2).

The equation will look like this.

Node (2) is not Observable for (SAD).One can not force node
(2) to one and keep node (1) and (3) in the low state. So the
redundant product term is untestable.

This circuit can be made testable by the addition of control
signal (Y) as follows:

Example 2: Untestable Logic - A Simple
Example

The logic F := F is untestable

The initial state of the oscillator is unknown; this system can be
made testable as follows:

RESET~DQ

SET~ 4J
CLOCK-----------

It has been done by addition of two control signals (RESET and
SET) and one extra product term.

Illegal States
Upon power-up the initial state of output registers are unknown;
this might force the device into one of the "illegal states".

The design engineer should be worried about the illegal state at
design time. For example let's look at modul0-6 state machine

~p
~~

The design engineer might ignore the other possible state (6, 7)
but his ignorance might be costly at test time. If upon power-up
the machine starts at either of (6) or (7) state, there is no way to
control the state-machine. The best solution is to force both of
the illegal states into one of the known states.

Example 3: Design "pitfall" Case One
Consider the implementation of the following example

01:= 11'01

CLOCK------~---

:It>-

11~ _~_

Agure 11. Implementation of 01 := 11·01 Using a PAL

If 01 falls to zero, it will stay there forever. The logic needs a
control signal for output reset.

Example 4: Design "Pitfall" Case Two
Consider the implementation of the following equation:

00 = A'01'00 + A'01'00 + 00

If Q5 goes to one it will stay there forever, the logic needs a
control signal to clear it's output.

Hard Array Logic (HAL) Devices
The HAL device is the Hard Array version of a PAL device.

HAL logic circuits are the best choice for designs that are firm
and volumes are large enough to justify the initial cost. Besides
having Boolean equation in PAL DESIGN SPECIFICATION
format the user should provide the following.

1. A FUNCTION TABLE which gives enough information
about the operation of the device. Normally this FUNC-
TION TABLE shall test a minimum of 50% "Stuck at fault"
grading using PALASM or TEGAS fault grading test.

2. The FUNCTION TABLE shall be constructed such that the
device may be initilized to a known state within a specified
number of steps (or clocks).

The HAL CIRCUIT SPECIFICATION is the input file used with
PALASM software for the HAL's. The input format as shown in
example 5 is as follow:

• Line 1 HAL circuit part number

• Line 2 user's part number followed by originator's name
and the date

• Line 3 device application name

• Line 4 user's company name, city, state

• Line 5 pin list which is a sequence of symbolic names
separated by one or more spaces. All pins including VCC
and GND must be named

• Line M the logic equation which are used to generate
metal masks from the provided equations

1Il\Ll2B6 Ill\L IESIQI SPOCIFICATIQI
~ S ~ ~ 04/20/83
IWiIC GM'ES
Ita SlIm2'. CIARA, 0\LIFCRlIA
CDFGMNPQIQlDJKLROBEBAVOC

-t-----L1NE 1
-t-----LINE 2
-+-----LINE 3
-+-----L1NE 4
-+-----LINE 5

B -/A INIIERIER Gl\TE (<Xl - 1)
OlE PR:IXlCI' ']ElM: tl (/A)

E - C"D AND Gl\TE (<Xl - 2)
OlE PR:IXlCI' ']ElM: 11 (C"D)

B - F + G at Gl\TE (<Xl - 3)
'M) PRJXJCl'TERMS: tl (F), 12 (G)

L • II + /J + !K NANDGl\TE (<Xl -4)
'IBRm PR:IXlCI'TERMS: tl(II), 12(/J), 13(!K)

0 - !M*/W OOR Gl\TE (DrS)
OlE PR:IXlCI' ']ElM: tl (/M* M

R • P*/Q + /P*Q llCR Gl\TE (EXH)
'M) PR:IXlCI' TERMS: tl(P*/Q), 12(!P*O)

lAB CIE PCB IJKL IH) FOR

IE lOOt XXX XXXX lOOt XXX
BL lOOt XXX XXXXXXX lOOt
XX BBB lOOt xxxx lOOt lOOt
XX ILL XXX XXXX XXX XXX
XX lOOt BIB XXXXXXX XXX
XX lOOt IBB XXXXlOOt lOOt
XX lOOt ILL XXXXlOOt XXX
XX lOOt XXX IBBB lOOt XXX
XX lOOt XXX BIBB lOOt XXX
XX lOOt XXX BBIB XXX lOOt
XX lOOt XXX BBBL lOOt lOOt
XX lOOt lOOt XXXXU.B XXX
XX lOOt lOOt XXXXBBL lOOt
XX lOOt lOOt XXXXlOOt BIB

(Dr1,P'l'-1)
(Dr1,P'l'-1)
(Dr 2, P'l'-1)
(Dr2,P'l'-1)
(Dr3,P'l'-1)
(Dr3,P'l'-2)
(Dr3,P'l'-1,2)
(Dr4,P'l'-1)
(Dr4,P'l'-2)
(Dr4,P'l'-3)
(Dr4,P'l'-1,2,3)
(DrS ,P'l'-1)
(DrS ,P'l'-1, 2)
(m-6 ,P'l'-1)

SAIl 'lEST
SAl 'lEST
SAIl 'lEST
SAl 'lEST
SAIl 'lEST
SAIl 'lEST
SAl 'lEST
SAIl 'lEST
SAIl 'lEST
SAIl 'lEST
SAl 'lEST
SAIl 'lEST
SAl 'lEST
SAIl 'lEST

IESCRIPTIQI
TIlE ~ !'ORPC5E OF THIS EX1IMPIE IS TO FAMILIARIZE
TIlE USER WI'I'H \eAT WE'MElIN BY "FONCl'IQI T1\BIE",
PRDX:T 'JERoI(P1') COJEIW:iE, STOCK-AT-O (57\0) AND

STOCK-M.'-alE (SAl) 'l!STS.

• Line N the function table which begins with the key word
"FUNCTION TABLE." It's followed by a pin list which may
be in a different order and polarity from the pin list in line 5.
VCC and GND cannot be listed. The pin list is followed by
dashed line; e.g.; which in turn is followed by a list
of vectors, one vector per line. One state must be specified
for each pin name and optionally separated by spaces. A
vector is a sequence of states listed in the same order as the
pin list and followed by an optional comment.

The allowable states are H (HIGH LEVEL). L (LOW LEVEL),
X (IRRELEVENT), C (TRANSITION FROM HIGH TO LOW
OR CLOCK PULSE) and Z (HIGH IMPEDE~~CE). After
preparing the PAL DESIGN SPECIFICATION in the above
format, PALASM software can be used to simulate and
perform fault testing.

1 XXXXXlOOOOOCOOC01
2 XXXXXXlOOOCXlOO
3 llXXXXXXXXXXXXXX
4 OOXXXXXXXXXXXXXX
5 XXlOXXXXlCOOOOCCllX
6 XXOJ..XXXXXXlOOCOC
7 XXOOXXXXXXXXXXXLXXX
8 XXXXXXXXOX1.l.llXXXXXXl
9 XXXXXXXXlXOlBXXXXXX1

10 XXXXlCXXXlXlOBXXXXXXl
II XXXXXXXXlXl.lLX
12 XXXXOOXXXXXXlOQllOOQO
13 XXXXl1XXXXXXXXL
14 XXXXXXlOXXXXXllXlOCXXl SI_p*o_l-

I R = P.Q + P.O EO - 6
6 ONlESTED(SAl)mtlLT :::.::.-=--=--=-----~
6 ONlES'I'ED(SAl)mtlLT } I P * 0 I
6 ONlESTED(SAO)mCLT .

PASS SIKlLATICN
m:nJCl': 1 OFEXXJATICN.
PRDJCT: 2 OF EXXJATICN.
PIaXlC1': 2 OF EXXJATICN.

NtJ!BER OF S'1OCK Nr OlE (SAl) meLTS ARE 2 8

NtJ!BER OF S'IUCK Nr ZER> (SAD) meLTS ARE 2 9

The following information is reported to the user

- Total number of SA 1 Faults. (8 in example 5)

- Total number of detected SAD faults. (9 in example 5)
SA 1 faults + SAD faults

2 • total number of product terms

8+9
* 100 % (~ *100"!o = 85% ex-5)

- One vector may detect more than one SAD OR SA 1
FAULTS (vector # 11 in example 5)

- The user is reported with a message which tells him the pro-
duct term for which it was not tested. (PRODUCT TERM 1 & 2-
EO 6. in example 5)

The following vectors can be added to the function table in
example 5 in order to achieve 100% fault coverage.

AB CDE FGJ IJKL IN) PQR a:MIEm'S (EXl\Ml'IE 5)

xx xxx xxx XXXX xxx LH:l <EXr6 ,Pl'2) SAO TEST
xx xxx xxx XXXX xxx HHL (EXr6,P1'-l,2) SAl TEST

PALASM'· software has tested the
above function table for example 5.
the result is as follows:

Bl\SIC GMES
1 XXXXXXXXXXlOOCX01
2 XXXXXXXXXXXXlOO
3 1.lXlOOCXXlOOOC
4 OOXlOOOCXXXXXXXXX
5 XXlOlOOOOCXXXXXXIlX
6 XXOlXXXXXXXXlOClal
7 XXOOlCXXXXXXXXXXLXX
8 XXXXXXXXOX1.l.llXXXXXXl
9 XXXXXXXXlXOl.BXXXXXXl

10 XXXXlCXXXlXlOBXXXXXX.l
II XXXXXXXXlXl.lUO
12 XXXXOOXXXXXXXXl!XXXXl
13 lOCXX1J.XXXXlOO
14 XXXXXXlOXXXXXllXlOCXXl
15 XXXXXXOl.XXXXX!llOOOOO
16 lCOCXXX1lXXXXXL

PASS SIMlLAXICN
NtJ!BER OF S'1OCK Nr OlE (SAl)
NtJ!BER CJE' S'1OCK Nr ZER> (SAD)
PRJ:IlC1' tI!at CD1ERAGI!:

FAIlLTS ARE 2 10
meLTS ARE 2 10

-100'

PAL®20RA10 Design for Testability

This article is written to help customers of the PAL20RA 1
recognize some fundamental design-for-testability issues which
may arise due to the part's unique architecture. Customers
should understand that these issues represent design criteria
which Monolithic Memories will use to accept PAL20RA10
patterns for test generation/fault grading and for estimating the
resource cost to test engineering if accepted. This article does
not address the SUSINESS REQUIREMENTS such as the need
for acceptable test vectors and the acceptability of a particular
pattern for processing as a HAL® device.

The designer who wishes to use a 20RA 10 in his/her design must
bear in mind that although the part has preloadability, certain
designs could diminish the effectiveness of this feature. The
following rules are presented to help establish Test Engineering
acceptance standards for the 20RA 10. Additional general guide-
lines applicable are available in the PAL Handbook article reprint
"Testing Your PAL Devices" by M. Vafai.

Avoid False Latching Situations
The equation D = (A"S) + (C+D) and its variants are susceptible
to latching hazards since ATE may have considerable input
skew. Of course. from a testing viewpoint, such implementations
should be avoided. Sut if they must be implemented, care must
be exercised in developing the function table so as to account
forthe possibility of latching. The designer must adopt and stick
to some guideline such as "no more than one input undergoes a
change in logic value per vector" when specifying the function
table.

c~

Assume A, Sand C are primary inputs while D is a fed-back
output. The waveforms to the left show two possible outcomes
for output D depending on the skew of inputs A and S, which is a
function of tester calibration.

The latch problem described is not unique to the 20RA 10 but is
clearly applicable to any PAL with asynchronous outputs with
feedback (e.g., 16R4). The designer should realize, however,
that false latching may occuron a 20RA 10 even if all outputs are
registered. Consider the equation set D:= C and D.CLKF = A"S
for a simple registered 20RA 10 output. The resulting waveforms
would look similar to those of the previous asynchronous
example. The important distinction here is that il 20RA10 has
programmable asynchronous clocks rather than a single 'master
clock' pin which can cause difficulties in testing.

Allow Data to Setup Prior to Clocking
The previous two pitfalls were examples of flaky latching due to
glitches during testing. Consider the equation set C := Sand
C.CLKF = A for a registered output. The following example
shows a definite positive latching ...but of flaky (skewed) data.

c~

Assume S is a primary input. Then the timing for situations at far
left and left may be with A as feedback and as primary input
respectively.

This example illustrates another aspect of the programmable
asynchronous clock feature of the 20RA20: Clock pulses can
have critical minimal or no delay relative to data setup time. Note
that all other registered PAL devices have dedicated common
clock pins to which delayed pulses are applied by the ATE to
allow sufficient data setup time and ATE input skew.

Avoid Unreachable States
The 20RA 10 may be preloaded to any state desired for testing
purposes. Unfortunately, the desired state may not exist long
enough for the simulator or ATE to use it. With all other
preloadable PALs, any arbitrary state may be pre loaded Into the
registers on a given test vector and the state will persist into the
next vector providing the required conditions to detect some
fault/s. This means all stuck-at-type faults pOSSibly detectable
can be detected. With the 20RA 10, the preloaded state may feed
back to assert state dependent resets or presets on one or more

Monollthlcl!r!n
MemorIes In.U1UTWX: 910-338-2376

2175 Mission College Blvd, Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

9-8

registers. Consequently, the desired state may last only a few
nanoseconds after the preload vector is complete before chang-
ing to some new state. Since the desired state is not stable going
into the vector immediately following the preload vector, the
faults expected to be detected become non-detectable.

Another problem arises whenever output control logic is a
function of state. In this case, assume the desired state for
detecting faults is preload and is stable in the next vector. If this
state provides the conditions necessary to detect faults and also
disables the outputs, then the faults will be effectivley masked
from detection.

Caution on Individual Register Bypass
Mode
The 20RA 10 allows the designer to permanently and indepen-
dently bypass any register. Those registers not permanently
bypassed may be bypassed under program control by setting
both SET and RESET nodes to logic high. In this 'bypass mode',
the register's D node is multiplexed to the output rather than its
Q node. There is generally no test problem in going into bypass
mode. The pitfall is in returning to 'register mode' operation,
which only the 20RA10 can do. Consider the equation set
C.RSTF = A and C.SETF = B of a simple registered output and

c 'IIIIIIItIIIr
An indeterminate state on the output can occur if both primary
inputs A and B go to logic low on the same vector.

the following possible waveforms. A race condition will occur to
see whether set or reset operation prevails in going from bypass
to register mode. There are two methods bywhich to get known
states for testing purposes:

1) Clock a known value into the register on the next vector or;
2) Set RESET to logic low on one vector and then SET to low

on the next or vice versa.

PAL® Design Function and Test Vectors

This article was written to help customers understand the pur-
pose of seed vectors and provide some general guidelines as to
what elements are important in developing them. It is assumed
that the reader has read the "PALASM'· Manual" and the "PAL@
Handbook" article reprint Testing Your PAL Devices.

In general, PAL@/HAL@ devices are required to provide a func-
tion table or "Seed Vectors" to Monolithic Memories in order to
ensure that parts shipped have a high degree of reliability forthe
application intended. Ideally, these vectors should accomplish
three objectives:

1) Initialize the PAL device preferably in the same way as in
the actual system;

2) Exercise the customer's functions thoroughly, emulating
actual system operation as closely as possible;

3) Provide a high degree of fault coverage.

Seed vectors which initialize the PAL logic circuit consist of one
or more vectors placed at the very beginning which will bring
both combinatorial and registered outputs to a stable and known
logic state (1 orO). This is necessary in the system also so that its
operation upon power-up is predictable. Furthermore, care
should be taken to ensure that the initialization state is a legal
state of the state machine for which the PAL device is intended.

The essential functions for which the PAL device was originally
designed must be exercised fully. This will assure thatthe tested
parts work the way they were intended to. In addition to essential
"designed-for" functions, it is prudent to include general test
exercises such as verifying that outputs don't change in the
absence of clock pulses and checking to see that inputs in the
"don't care" (X) state don't produce adverse responses. General
test exercises help to reinforce the validity of a design and can
uncover overlooked design errors. After a set of exercises has
been decided upon, the next step is to write them in a format
suitable for simulation purposes.

The designer may have originally defined the functions in terms
of equations, state diagrams, truth tables, etc. Truth tables are
readily reformatted to PALASM1 syntax "Function Tables" and
exercises with the simulation option (code=S). State diagrams
can be converted by expressing each state and input edge in
binary vector format and sequencing them according to the
diagram's flow. The customer should become thoroughly
familiar with the syntax of the function table description (see the
PALASM Manual for a detailed treatment of syntax) before
attempting to translate truth tables. etc.

The following simple example demonstrates how exercising
seed vectors might be derived from a designer's state diagram:

Assume the following state and edge definitions accompany the
diagram:

STATE D = LL
STATE 1 = LH
STATE 2 = HL

(ILLEGAL) STATE 3 = HH

EDGED = LL
EDGE 1 = LH
EDGE 2 = LL
EDGE3 = LH
EDGE4 = LL
EDGE 5 = HH

(INITIALIZING) EDGE 6 = HL
(INITIALIZING) EDGE 7 = HL
(INITIALIZING) EDGE 8 = HL
(INITIALIZING) EDGE 9 = HL

From the above information, it is possible to create the truth
table for the diagram and then the function table representation:

EDGE PRESENT STATE NEXT STATE

AB CD CD

HL XX LL

HH LL HL

LL HL HL

LH HL LH

LH LH LL

LL LL LH

LL LH HL

TWX: 910-338-2376
2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

Monollthlo 1!~11
Memories U1Jn.U

FUNCTION TABLE REPRESENTATION_._-
FUNCTION TABLE

AB CO
=

HL LL INITIALIZE DEVICE

HH HL TEST EDGES
----- --

LL HL TEST EDGE 4

LH LH TEST EDGE 3

LH LL TEST EDGE 1

LL LH TEST EDGE 0

LL HL TEST EDGE 2

Fault Coverage
Another criterion for seed vector completeness is "fault coverage".
Fault coverage is an empirical method and is more quantitative
than functional exercising - indeed, no knowledge of the
circuit's intended function is necessary or assumed (although it
could help) while developing fault coverage vectors.

Fault coverage, being an empirical approach to determining a
logic circuit's reliability, uses the concept of "failure models" to
grade the effectiveness of a given set of test vectors. This is
called "fault grading". In fault grading a set of vectors, a fault
coverage value is calculated that is simply the ratio of detected
faults to total faults expressed as a percentage.

Test vectors may be graded against one or more failure
models. Some well-known models include single stuck-at-1/
stuck-at-O, pattern sensitivities, shorts and opens and multiple
stuck-at models. Selection of a failure model (or models) for
fault grading fundamentally depends on the model's empirical
effectiveness for screening bad parts and will be affected by a
numberof factors including circuit technology and fault simulator
capabilities.

The most common and primary fault coverage failure model
considered by "TGEN" at Monolithic Memories is the classic
single stuck-at-1/stuck-at-O failure model. "TGEN" automat-
ically appends test vectors which test for the following additional
failure models where applicable: 1) Adjacencies, 2) Clock,
3) Tri-state.

"TGEN" has a specified minimum value of fault coverage for PAL
and HAL devices based on the single stuck-at failure model. The
minimum values are determined by current "TGEN" policy (see
your FAE) and reflect the economic trade-off between acceptable
levels of reliability and the cost of test generation for maximum
coverage. PAL and HAL devices for which the specified minimum
values cannot be attained will require the customer's written
waiver for low coverage prior to production release of the
pattern.

The fault coverage percentage determined by "TGEN" is dif-
ferent from the percentage determined by selecting the fault
testing option (code=F) of PALASM1 software. In PALASM1
software fault coverage is based on product term coverage
(PTC). PTC is still the ratio of detected to total faults exceptthat
"detected" and "total" fault sums refer to stuck-at faults on
product term outputs only. PTC ignores stuck-at faults which
occur anywhere else. A more accurate procedure is to calculate
the coverage based on all the circuit nodes where a stuck-at
condition may occur. When every node (fault site or wire) is
considered, the coverage calculated correlates to the design'S
testability better and will generally be a much lower value than
PTC. "TGEN" goes one step further in conservatism by cal-
culating fault coverage on a "collapsed" fault basis. Fault
collapsing simply divides all the stuck-at faults into groups such
that, within agroup, ifone fault is detected, then all the others in
the group are detected too. The advantage of collapsing it that
only one representative fault in a group needs to be selected for
test generation and if it is detected, then the other "equivalent"
faults are detected by definition. This saves time and effort on
test generation for eqUivalent faults. Calculations on a collapsed
fault basis treat each group as one fault.

The following simplified example demonstrates the difference in
fault coverage calculations using a collapsed fault list:

l/SAl 21SAO
A

B
3/SAl 4/SAO

C
S/SAl 6/SAO

0
7/SAl 8/SAO

9/SAl 10/SAO 2S/SAl 26/SAO
E J

11/SAl 121SAO
F

13/SAl 14/SAO
G

lS/SAl 16/SAO
H

17/SAl 18/SAO

Note: This example is a SImplified one for illustrative purposes only and does
not show the effects of faults normally associated with input or output
buffers. Also, some partial collapsing has already been done (i.e. input
faults of "OR" gate are collapsed into output faults of "AND" gates)

Assume the above circuit is to be realized as a PAL or HAL
device. Suppose some seed vectors are provided also, as shown
here:

A B C 0 E F G H I

VECTOR 1 H H H L L L L L L 1
VECTOR 2 L L L H H H L L L

VECTOR 3 L L L L L L H H H

VECTOR 4 L L L L L L L L L

Monolithic W f!IIemories

The seed vectors on the previous page yield various values for
fault coverages corresponding to the method of calculation as
shown;n the table below.

PTC EVERY NODE COLLAPSED

SUBSET OF TOTAL 20 2.4,6,20,26 2 Vector 1
FAULTS CONSIDERED
FOR CALCULATIONS 22 8,10,12,22 8 Vector 2

THAT ARE DETECTED 24 14,16,18,24 14 Vector 3
BY EACH VECTOR
(SHOWN AT FAR RIGHT) 19,21,23 19,21,23,25 19 Vector 4

TOTAL FAULTS 19,20, 1,2,3.4,5,6.7,8,9,10,11, 1,2,3,5.7,
CONSIDERED FOR 21,22, 12,13,14,15,16,17,18, 8,9,11,13,
CALCULATIONS 23,24 19,20,21,22,23,24,25,26 14,15,17,19

PERCENT COVERAGE 6/6 = 100% 17/26 = 65% 4/13 = 31%

As can be seen from the above example, given the same seed
vectors, PALASM1 software would show 100% coverage whereas
"TGEN" would show 31% coverage. Notice that the poor
coverage by "TGEN" is due to none of the input nodes being
tested for stuck-at-1. In most instances, a better set of test vectors

can improve the coverage significantly. For the above example,
the reader can verify that the following slight modification of the
seed vectors would yield 100% coverage for all calculation
methods:

A B C D E F G H I

VECTOR 1 H H H L L L L L L

VECTOR 2 L L L H H H L L L

VECTOR 3 L L L L L L H H H

VECTOR 4 L H H L H H L H H

VECTOR 5 H L H H L H H L H

VECTOR 6 H H L H H L H H L

Testability
The previous sections described some essentials for compre-
hensive seed vector set. Variations on how fault coverage is
calculated was covered also. However, no matter how it is
calculated, fault coverage is only as good as the testability of the
circuit permits. Using the stuck-at failure model, the customer
must consider both absolute and practical fault coverages
achievable for his PAUHAL logic circuit design. Certain testa-

bility factors, such as redundancy, number of test points (out-
puts) or reconvergence, affect absolute (i.e., theoretical max-
imum) coverage. Other factors, including preloadable state
machines, the amount of feedback and overall controllability,
will affect practical coverage since many faults may be potentially
detectable but uneconomical to detect due to excessive vectors
or difficult to reach states. As testability is improved, absolute
and practical fault coverage will usually increase.

METASTABILITY
A Study of the anomalous behavior of synchronizer circuits

INTRODUCTION
ThIs artIcle will summarize the results ot the studies pertormed on

synchronizer CircuitS The mJormation presented may be used by system
designers to gam mSlght mto the anomalous behavior of edge-
tnggered flip-flops. Understanding Hip-flop behavior and applying
some simple design practices can result in an increased reliability of
any system.

METASTABILITY
In the digital world a bit represents the fundamental unit 01 measure

The output slate ot any dIgital device ISeither "HIGH" (a voltage level
above VlH) or "LOW' (a voltage levet betow VlL) as shown m figure 2
Under the proper operatIng conditIons the register In figure I outputs a
HIGH or a LOW on the nsmg edge ot the clock WIthm a nommal delay
calted the "clock to out" delay lt the setup and hold times are VIolated
the regISter ~as a smalt probobIlity of entering a third region of
operation called the "metastable" slole. Metastable isa Greek word
meaning "in between" and it is a state between HIGH and LOW Even
though most synchronIzers snap out 01 metaslabl1ity In a short pened of
time. theoretically this state can persist indeflrutely Some of the registers
bul1t from olq:1ertechnologIes had metastable states which lasted as
long as a tew microseconds. When the output of a deVIce goes mto
metastability the clock to out detay WIll be grossly attected ThIS may
alter the system's worst case propagatIon delay and j:X)tenhally lead
to a system crash I

SYNCHRONIZERS
The design 01 a synchronous digilal system ISbased on the assumplIon
that the maximum propagation delay 01 a llip-llop and any other gates
are known A digital system ISfree of hazardous race condllIons and
timing anomalIes if the maXImum propagation delay in the system
does not exceed the clock's period. In syslems where an asynchronous
input is intertaced WIth a clocked device such as a llip-llop, the
maxImum specitied propagation detay of this deVIce may no longer
be vatid if certam electncal parameters are VIotated Computer
peripherals, an operator's keyboard. or two independently clocked
subsystems are instances where there is a possibihty 01 interlacing an
asynchronous input which will violate the synchronizer's electncal
parameters

A popular device typIcally used m synchronized systems ISthe
edge-triggered register shown m figure I. The edge-tnggered regIster
WIll properly synchronize the incoming data to the system's clock as
long as its operating conditions are satisfied. Table I summanzes these
specifications for MonolIthic Memones lnc:s (MMI) 74LS374 regIster It IS
difficult to guarantee setup and hold time requIrements when the data
is asynchronously mtertaced to a regISter The VIotation of setup or hold
time m a regISter has a probabilIty of lrutiatmg a mIsbehaVIOr termed
"MetastabilIty:'

SYMBOL PARAMETER COMMERCIAL UNIT
MIN. TIP. MAX.

VCC Suppty Voltage 45 5 55 V

TA Operating free air temp. 0 75 °C

tw Width 01 clock IS ns

tsu Setupfime 20 ns

th Hold time 0 ns

NS
FIgure 2

The diagrams in tigure 3 illustrate some examples of wavelorms in
the metClStable condition. From the waveforms it is evident that the
outputs are distorted under metastabte conditions. Figure 3d shows the
output of a typical 74LS374 register manuJactured by MonolIthic
Memories. MonolIthic Memories family of bipolar devices exhibit
superior metastable hardened pertormance due to theIr high speed
bIpolar technology and advance Schottky TTL CIrcuIt deSign techniques
Most of these deVIces typlcatly snap out of metastabilIty m a flashmg IS
nanoseconds.

WHY THE SYNCHRONIZER FAILS
Before attempting to explain how the synchronizer's internal CIrCUIty

tails tel's take a look at an mteresting problem
PROBLEM In the SR type latch shown m figure 4 what happens If the

set (S) and the reset (R) inputs are simultaneously raIsed trom a LOW
voltage level to a HIGH leve]?

TWX: 910-338-2376
2175 Mission College Boulevard, Santa Clara, CA 95050 Tel: (408) 970-9700 TWX: 910-338-2374

Monolithic ~~n
Memories In.IrW

9·13

transition and WIll quJckly oscillate 10a nnOi sleauy ~lUl~ Ul t;:'1111~i nl\.:lll

or LOW (see figure 30) To demonstrate this result the reader is
encouraged to do this excercise either mentally or to adually build the
circuIt and view the output on the oscilloscope.

(5NS/DIV, IV/DIY)

~
\

Clock driven master-slave flip-flops contain the same type ot cross
lIed RS latch within theIr internal circultry The NAND gate equivalenl 01
the master-slave D type flip-flop ISshown m figure 5. The gates drcled in
thIs figure can polenlIally behave similar to the abave problem. If the
clock and data are triggered within a specilic window of one another
the output may have an oscillatory behavior before setlling down.

Cross tied RS latch structure is seen in the master ·slave
edge triggered flip· flop

figureS

triggered flip-flop with an asynchronous data mtertace If the setup and
hold times ot the flip- flop are satisfied the output behaves properly
(figure 60). One 01 the lour possible events below can take place ilthe
flip-flop goes metastable:

t) The output starts to make a transition but snaps back to ils onglnal
state (figure 6b).

The circuil shown in figure 7 is used to obtam expenmental resulls of a
metastable device The circuit can detect and count the number of
events of metastabHit-" The device under test (DlIT) ISforced mto
metastability by repeatedly sweeping the edges of the data past the
rising edges of the clock. The modulation 01 the data 15 possIble by usmg
a comparator deVIce (UI) along WIth an external sawiooth waveform
Thousands of transilions are created Wlthm the setup and hold time
window of the DlIT. Sweeping the data edges past the low to hIgh clock
transitions SImulates an asynchonous input and mcreases the probabil-
ity ot getting a metastable tailure on the output (Q) of the DlIT

o JITTER BAND SIMULATES AN ASYNCHRONOUS BEHAVIOR

(!) METASTABLE Otm'lTI'

II the output 01 the device goes into metastability it wtll be detected by
the comparator paIr (U2) and (U3). The comparators wllJ have comple-
mentaryoutputs It the output (Q) 01 DUT ISanywhere between VlH and
VlL. The outputs of the comparators are latched by a delayed version of
the clock (AClock). The EXCLUSNE-NOR gate lollowed by the register
SIgnal the event of metastability to an external counter

The vanable delay (A) between the two clocks wtll sample the output
at various locations on the time axis As this delay is varied the event 01
metastability is sampled and counted at these locations by our circuit.
Therelore the output of our CIrcuit measures the rate 01 metastability
versus time delay The real behavior of a metastable output can thus be
ellectively characlerized wtth this scheme. that is. we can determine the
length of time a metastable conctition wtll persist and the density
dlstnbution of the metastable event

Three 7437'\ deVIces and lour PAL deVIces are used in this experiment.
The plots of metastable failure versus time are shown in ligures 8a.b. The
next section wtll discuss in detail the characteristics of these plots.

EXPERIMENTAL RESULTS
Vanous graphs of metastability lailure rate versus delay time are

illustrated in lipure 8 We can conclude from these graphs that Ihe rate
of metastability failure decreases as the sample clock (ACLOCK)
moves farther and farther away from the DUT clock The pictures shown
In ligure 9 have captured repeated events 01 metastability on the
oscilloscope.

LeI's take a closer look at one of the graphs to examine the behavior
of the deVice, The PAL16R4A~4 device exhIbits one count per second if the
delay (.1) IS60 nanoseconds As the delay (.1) is decreased. the rate
mcreases exponentially until the delay equals 32 nsat which point the
rate flattens out and remains fixed. The 32 ns torms the knee of our
graph and will be referred to as ~o_ The rate will remain constant if the
delay (.1) ISdecreased past the knee 01our graph FUrther reduction In
the delay will Place the sampllng clock's nsing edge prior to data
transitions and thus the error rate vanishes to zero The time at which the
rate goes to zero IS marked WIth an (X) on the graphs. By usmg this time
(X). and another. location on the graph such as the time where only one
error per second occurs, we can associate an approximate range of
metastability tor ditterenl devices nus range 01 metastability is re1erred
to as the ··mean time to snap out of metastability", From the graph it is
eVIdent that the mean time 10snap out of metastability for the PAL16R4A-
4 logiC circuit is the dillerence t>etween 60 ns and 25 nswhich is 35 ns

to'
MAX

10'
U
'"l la'

0~
10'

~
FAIRCHILD
74F374

~ 10'

~
10'

10'
10

Figure8a

10'

MAX

10'
U
f!l

i 10'

~ 10'

~
~ 10'

~

In the above equation the MAX value is representative of the
maximum metastability failure rate in our device This MAX value
isclosely related to the frequency at which a metastable condition
may occur in our device. The frequency at which metastabl1Ity occurs
is simply a constant multiple 01 the product of CLOCK and DATA
lrequency

a· In FAILURE = a· In (KI olCLOCKoIOATA) - b('; - ';0)

In FAILURE = In(Klo fCLOCK° fOATA) - b/a(,; - ';0)

FAILURE = (KlolcLOCK oIDATA) e-k2(6- 60)

Table 2 gives the three Important porameters wluch can be used by
system desIgners to tully charaderize the metastable behavior ot the
menhoned devices. These parameters can be obtaIned for different
devices by duplicatIng this experiment. An example isgiven below to
show how the informahon on table 2 may help the designer in the
design ot asynchronous systems.

MANUFACTURER DEVICE KI(Sec) K,(ns-') l:>o(ns)

PALI6R4 I x 10 ' 43 37

PALI6R4A I x 10 ' 43 345
MMI PALI6R4A-2 I x 101 64 25

PALI6R4A-4 I x 107 5 31
74LS374 2x 10 ' 18 275

AMD 74LS374 2x 10 ' 2.0 345
FAIRCHILD 74F374 2x 107 115 175

EXAMPLE
For the hardware Implementahon in hgure 10determine the mOJo-

mum clock frequency to give a typical error rate ot one tailure per year
We must choose the minimum penod to give an error rate otless than

ASYNCHRONOUS
DATA

(9.6KHz)

one tailure per year. From Ihis result we can determine the mmdmum
clock trequency The hme l:> in the equahon below wIll determine the
dIstance between clock edges. We must determIne l:> from the equahon
by numerical extrapolation. The system clock's penod can be repre-
sented as (l:> + Tcc + setup). or plugging in the numbers iI is 6+75.

FAILURE= (KI • !cLOCK' fDATA)e-K'(6 - 60)

and plugging in Ihe appropriate values we have:

3.2EE- 8 = [(lEE - 7) (1/(l:>+75ns» (9600)J e-I(4 3)(6-37)1

Solving for l:>, we see thai it isapproximately 43 nanoseconds The
system period is thus seen to be the sum of 43nsand 75nsor 118nsThe
maximum clock frequency is the inverse of the penod or approximately
8 MHz.

CONCLUSION
Synchronizahon ot two independenl pulse trains is possible through

the use of edge triggered registers The eledncal charadenshcs of the
flip-nop are affeded when the selup and hold hmes of the deVice are
Violated This misbehavior is termed "metastabIlIty" and itsprobabIlIty
of occurrence can be derived tor a given system The factors which
aUecl this probability and the lengih of hme which a metastable
condition persistsare influenced by the technology otthe device as well
as by the circuit design techniques

An imporianttact which needs to be stressedis that even it a register's
output goes metastable, the system may not necessarily tail it the
register snaps out in time to sahsty the system'sworst case hming
requirement. The following design pradices are suggested when USIng
synchronizers.

Try to mInimize the number of locahons where asynchronous signals
enter your system.

Clocking the asynchronous inputs through two plpelIned regIsters can
greatly reduce the error rate.

Usea single clock within your local system environment. For multiple
system clocks, derive all the clock signals trom a single source to assure
synchronizahon between different devices within the system.

When analyzing the worst case hming of your system.add the hme 10
snap out ot metastabitity to any register in an asynchronous data palh

A single PAL' with registers can be your best chOIce tor state machIne
analYSISof asynchronous events.As the registers have Virtually Idenhcal
setup hmes. the slffiultaneous observahon ot a metastable event by
ditferent register statesare hkely to be the same Contrasted to a
dIstnbuted system of obserVIng register statesWith different setup hmes.
the PALsystemof register statesWith Idenhcal setup hmes ISa supenor
synchronizer.

Avoid edge sensihvedevices on the output paths ot the registers
which have asynchronous inputs. The glitch created when Ihe synchro-
nizer goes metastable is enough 10 trtgger the edge sensitIve deVlce.
The use 01 level sensitive devices is generally a better design practice.

PAL devices can be effective synchronizers where various registering
schemes are easily implemented

Fast 64x64 Multiplication
Using 16x16 Flow-Through Multiplier

and Wallace Trees*

The Monolithic Memories SN54/74S556 is a high-speed fully-
parallel 16><16multiplier and it provides the entire 32-bit pro-
duct on a flowlhrough basis from a single part. It is available in
an 84-pin Leadless Chip Carrier (LCG) and 88-pin, pin-grid array
packages. Ble84O-pin array-multipliers such as the SN5417 4S557 18
have been available for several years, however there is a large
parts count for implementing longer word lengths.

This paper describes the design philosophy and internal archi-
tecture of the 'S556 and applications for larger wordlength mul-

tiplications such as 32, 48, and 64 bits using these multipliers
and high-speed PROMs and ALUs also available from Monoli-
thic Memories.

The system advantages for using the 'S556 over the MPY-16H-
class multipliers is also discussed; the main advantages being
the availability of the entire product each cycle and the space
savings on the board.

.• This paper is a slightly updated version of the paper by the same name which appeared in the Northcon/83 Professional Program Session Record, Session 24
reprint. paper 24/2. 10-12 May 1983. A modified version subsequently also appeared in the Mini Micro WesV83 Professional Program Session Record. Session 14,
paper' 4/2, 8-11 November 1983.

TWX: 910-338-2376
2175 Million College Boulevard, Santa Clara, CA 95054 Tel: (408) 970-9700 TWX: 910-338-2374

Monolithic ~~n
Memories InJl1JJ

Summary
Multiplication is one basic digital-computer operation which
can readily be speeded up by employing massive parallelism.
"Cray multiplication" techniques, first used in large special-
purpose computers a quarter of a century ago. are now
commonplace in high-performance systems.

Essentially. in Cray Multiplication a full adder is placed in
every position which would be occupied by a partial-product
bit in a pencil-and-paper binary multiplication example (r1.
r2). This technique may be applied within an L81 integrated
circuit, in a system, or in both at once; it mayor may not be
modified by using "Booth-multiplication" approaches (r3, r4.
r5).

8x8 40-pin Cray-multiplier integrated circuits have been
available for several years, with a useful "flow-through"
architecture. However the parts count for implementing full-
blown Cray multiplication with practical scientific-computa-
tion word-lengths has been quite large. There have. of
course, been several 16x16 Cray-multiplier 64-pin integrated
circuits available; however, these have been unable, because
of pin limitations, to furnish an entire 32-bit product in
parallel. As a result. long-word-Iength multiplication cannot
be performed economically on a flowthrough basis using
these parts; some sort of clocking and multiplexing scheme
is necessary to use them whenever the wordlength exceeds
16 bits. or else they must be duplicated outright.

Now there is a 16x16 Cray-multiplier part, the Monolithic
Memories 8N54/748556. which provides the entire 32-bit
product on a flow-through basis from a single part. The
'8556 has been designed to use the new 84-pin lead less-
chip-carrier (LCC) and 88-pin pin-grid array packages. rather
than compromising the architecture of the part because of
the pin limitations (64 at most) of dual-in-Iine (DIP) packages.

This paper describes the design philosophy and internal
architecture of the '8556. It also shows how long-word-
length multipliers may be built up from arrays of individual

Cray-multiplier integrated circuits and programmable read-
only memories (PROMs); the latter are used as "Wallace-
tree" adders. Part-count and performance comparisons are
made, for the representative word length of 64 bits, between
implementations based on 64-pin 16x16 devices and imple-
mentations using '8556s, in two different architectures; one
which aims at lower cost and is a compromise between Cray
mUltiplication and traditional shift-and-add multiplication.

. MULTlPl.ICATION ... CAN llEAOIL'/ BE SPEEDED UP
B'/ EMPLO,/ING MASSIVE PARALLELISM ... "

'5556 Architecture
The '8556, shown in Figure 1, is a 16x16 Cray multiplier
designed with an ultra-high-speed array of 256 adders, inter-
nally organized to the shift-and-add technique for multiplica-
tion (r1, r2). In place of the usual ripple-carry adders used in
multiplier designs to sum up the final product bits, the '8556
uses a carry-Iookahead adder.

16-BIT [YO
Y INPUT Y15

YM
• SO }l6-BIT
: LSP

S15

S311'31 Sl~

16-BIT
MSP

Figure 1. The '8556 Architecture

The "flow-through" architecture of the 'S556 works equally
well in synchronous or asynchronous pipelined systems.
latches are available to hold the input operands and the
resulting double-length product, to increase the throughput
rate in Pi~elined systems. If the designer does not wish to
use these latches, they may be disabled, and the 'S556 then
operates s a pure memoryless arithmetic network.

The 'S556 accepts operands in either unsigned or signed
twos-complement form. When used in pipelined architec-
tures, the 'S556 is capable of supplying 32-bit products at a
12.5 MHz repetitive throughput rate. The 'S556 has three-
state outputs, controlled by the TRll and TRIM control
inputs.

Rounding-control input pins are provided on the 'S556 for
rounding either unsigned or signed operands. Rounding is
allowed in either of two binary positions, to support either
"fractional-arithmetic" or "integer-arithmetic" positioning of
a single-length rounded result.

The more traditional shift-and-add technique was chosen
for the internal design of the 'S556 adder network because
of the compactness, simplicity, and lower power requirement
of this implementation. The Booth-algorithm approach, which
groups the multiplier bits to effectively reduce the number of
rows in the array, was considered (r3, r4, r5). However this
approach also has penalties, in that it increases the width of
each row from 16 to 18 bits, and the width of the final adder
from 18 to 24 bits. Intrinsically, both the shift-and-add tech-
nique and the Booth-algorithm technique require 31 logic
delays in the multiplier array using a ripple-carry final adder.
At this point, the use of a carry-Iookahead adder structure
results in major speed improvements.

Here again there are tradeoffs. In MSI bipolar circuits,
carry-Iookahead parts are reasonable to construct with scan-
ning widths of up to 4 bits, with a carry-out available (r5).
Beyond th'1t, the circuit gets bulky and power-hungry. Paral-
lel "banking" of 4-bit-adder groups may be used to extend
this limit, but here again 4 to 5 banks is as far as this approach
can be reasonably pushed. With parallel banking the 24-bit
adder required by the Booth-algorithm technique can be
implemented using 6 banks of 4-bit adders; this exceeds the
limit of 4 to 5 banks. This shows that the Booth-algorithm

implementation requires fewer horizontal rows of adders,
which translates to shorter propagation delays as compared
to shift-and-add technique; however the final adder in the
Booth-algorithm implementation is slower than the final
adder in the shift-and-add technique implementation.

The 'S556 internal design uses an Emitter-Coupled-logic
(ECl) circuit implementation, based on Monolithic Memories'
new washed-emitter process. ECl was chosen here over
TTl and Emitter-Follower logic, both of which have been
used in previous Monolithic Memories Cray-multiplier
designs (r3, r4). Here, ECl also turns out to have the most
compact circuit-layout form, requiring 82 square mils of chip
surface area per full adder. Emitter Function logic (EFl) was
chosen for one portion of the design, the carry-Iookahead
tree, because it interfaces easily with single-ended ECl
outputs. All latches are implemented in ECl, to interface
easily with the TTl/ECl buffers at the inputs and the
ECl/TTl buffers at the outputs. The input latches introduce
one ECl delay, but there is zero additional delay at the out-
puts as the output latches are incorporated right into the
ECL/TTl translators.

The 'S556 is a universal multiplier aimed at a flow-through-
type-processor architecture. latches are used since regis-
ters cannot implement a flow-through architecture directly.

To be sure, the currently-available 16x16 multipliers from
TRW and AMD, which use 64-pin dual-in-line packages do
have a feed-through capability on the output registers. This
capability allows latch-like transparency on the output
registers, but nowhere else, since the parts are pin-limited
and input and output data must in some cases share the
same pins. Such an implementation consumes considerably
more chip area and power than a purely latch design.

" ••• THE 'sSS6 INTERNAL f>ESIGN USES

MONOLITHIC MEMORIES' NEW
WASHEP-EMlrrER PROCESS ..• "

Many users who wish to use registers to achieve pipelined
operation can find ways to do so using the 'S556s' internal
latches. Usually pipelining can be achieved by choosing the
proper phasing and pulse width of the latch gate-control sig-
nals without resorting to using external registers. Of course,
external registers may be used when absolutely necessary.

The 'S556 will be supplied in an 84-pin leadless Chip
Carrier (lCC), and also in an 88-pin pin-grid-array package,
with an integral heat sink. Both Commercial and Military
grade parts will be available. The pinout is shown in Figure
2a. A photograph of the 84-pin lCC package is shown in
Figure 2b.

Expansion for Longer Word lengths
A major advantage of the '8556 is the availability of all 32
product bits in 100 nsec from the very beginning of a multi-
ply operation, or every 80 nsec on a repetitive pipelined
basis. (These times, and others quoted in this paper, are
worst-case rather than typical.) Thus, the '8556 is especially
suited for longer-wordlength arithmetic units.

Other commercially-available multipliers, of the TRW
MPY-16H class, are packaged in 64-pin gOO-mil DIPs, which
require a circuit board area of approximately 1" x 3.25~'
Moreover, these parts operate more slowly in expanded
configurations, as the most-significant half and the least-
significant half of the 32-bit double-length product must be
obtained on two successive clock cycles.

Totally-Parallel 32-bit Multiplier
The '8556, together with PROMs organized in a "Wallace-
Tree" configuration, can sail along at the rate of four 56x56
multiplications every microsecond. An unsigned 32-bit multi-
plication can be performed using 4 '8556 multipliers, 11
638481A PROMs used as "Wallace-Tree adders" (r1), and 16
'8381 and 5 '8182 used to form a 64-bit adder. The multipli-
ers supply the partial products which are positioned as shown

•... ~E ·S556.1bGETHER WI'fH PRoMSORGANIzE.1I
I~ "'·WAw.ACE-TREE"CONFIGURA-nO~. CAN SAIl-
RIGIlT ALONG AT '!'HE RAn; OF FouR 66 x 56
MUl.'TIPl.ICATIONS EllERY MICROsecoND ...•

in Figure 3. The difference is that only unsigned operands are
used, and only positive partial products are added. The three
rows of partial products which overlap are added by using
PROMs which "compress" these three rows to 2 rows, which
are then added in the 64-bit adder. The compression technique
is discussed in greater detail in the description, later on, of the
64-bit multiply operation. Using the above configuration, an
unsigned 32x32 multiply operation can be performed in less
than 175nsec worst-case allowing for a 75-nsec 'S556 multiplier
delay, a 3O-nsec 63S481A PROM delay and a 64-nsec 64-bit
adder delay.

BITS
63-48

"
BITS
15-0

/••
64-BIT 2'S COMPLEMENT OUTPUT

Alternatively, a twos-complement 32x32 multiplication can
be performed within 228 nsec using 4 '8556s, 18 '8381s, and
7 '8182s. This 32x32 multiply operation involves the adding
up of four partial products as shown in Figure 3. These four
partial products are generated in four multipliers; the out-
puts are XA*YA, XA*YB, XB*YA, XB*YB, where X31-16 = XB,
X15-0 = XA, Y31-16 = XB, Y15-0 = XA.

The implementation of this twos-complement 32x32 multi-
plier is shown in Figure 4. The outputs of the 16x16 multipli-
ers are connected to two levels of adders to give a 64-bit
product. The first level of adders is needed to add the two
central partial products of Figure 2, XA*YB and XB*YA.
Notice the technique which is used to generate the "sign
extension" or the most-significant sum bit of the first level of
adders. The '8556 provides as a direct output the comple-
ment of the most-significant product bit; having this signal
immediately speeds up the sign-extension computation, and
reduces the external parts count.

Xl5-0 Yl5-0 Xl5-0

U
Xl5-0 Xl5-0

YM XM
'S556 'S556

So ":" S31-17, S150 Sl5-0 ":"

S63-48 S47-32 S31-16 Sl5-0
OUTPUTS

• THESE ARE ADDER BLOCKS USING THE'S381, A 4-BIT ALU FUNCTION GENERATOR, TO PERFORM A HIGH SPEED ADD
OPERATION. THE'S182IA A LOOK-AHEAD CARRY GENERATOR AND IT REDUCES THE PROPAGATION DELAY. ALL THE
ABOVE PARTS ARE AVAILABLE FROM MONOLITHIC MEMORIES INCORPORATED.

TOTAL MULTIPLY TIME = MULTIPLIER DELAY + ADDER LEVEL 1 DELAY + ADDER LEVEL 2 DELAY = 75 + 64 + 64 = 203 "see

For example, the inputs to the adder in the most significant
position are the 831 outputs from the two central multipliers.
The sign extension of the addition of XA*YB and XB*YA is
defined as
81GN EX = A.B. + A.C + B.C, where

A is the most-significant bit of the term XA*YB;
B is the most-significant bit of the term XB*YA; and
C is the carry-in to the most-significant bits of XA*YB and
XB*YA, in the adder.
The sign extension can be computed as the negation of

the carry-out term of three terms, A, B, and C. This term
corresponds to the negative of the carry-out of the bit posi-
tion just one place to the right of the most-significant bit posi-
tion of the first level of adders. The negative of the carry-out
can be generated by presenting a carry-out and a binary
"one" to the most significant bit of the adder. The generated
sum bit then corresponds to the negation of the carry-out of
the previous stage, which is the sign extension required to
be added to the 16 most-significant bits of the XB*YB partial
product term.

The second level of adders, which performs a 40-bit add
function, is fairly straightforward. These adders can be imple-
mented using '8381 four-bit ALUs and '8182 carry-bypasses
("carry-lookahead generators") which are available from
Monolithic Memories, Inc. and from other vendors.

Other configurations such as 48x48 multipliers can be
designed using the same methodology. Figure 5 shows the
alignment of the partial products from 9 '8556s for the 48x48
case.

Serial-Parallel Multiplier
In applications where speed can be sacrificed, it is possible

BITS
95-80
\"

BITS
15-0
/

to implement an alternative solution using fewer multipliers,
at some penalty in speed, but still with a very significant
speed gain over other methods of multiplication. Figure 6
shows a plausible method of performing a 64x64 multiply
operation, in four cycles. Each cycle generates four partial
products, each of which is 32 bits wide; these must be added
in at the appropriately-aligned bit positions to generate an
80-bit partial product, in logic external to the multipliers. On
the next cycle another 80-bit partial product is generated,
and is added to the previous 80-bit partial product at the
appropriate alignment offset. Figure 7 shows the 16 32-bit
partial products aligned appropriately to their binary weight-
ing, for the entire time-sequenced multiply process. The final
128-bit product can be obtained from the addition of the four
80-bit partial products on successive clock cycles.

YI
16-BITS

PORTION OF
MULTIPLIER

-------.y,------,;'
8ll-BIT PARTIAL PRODUCT

THE YI- PARTIAL 16-BIT OPERANDS YD. YC. VB. YA ARE LOADED AND
MULTIPLIED BY THE ENTIRE 54-BIT X OPERAND IN FOUR STEPS TO OBTAIN
A 128·BIT PRODUCT AS SHOWN IN FIGURE 7.

Figure 6. A Serial-Parallel Multiplier Architecture

Totally-Parallel 54-Bit Multiplier
A speed-oriented hardware configuration takes the approach
of using whatever external logic is needed for the very fast-
est possible 64x64 multiply operation. Figure 7 may be
applied in this case also; it shows 16 32-bit partial products.
(For simplicity. will assume that the configuration described
here deals strictly with unsigned integers. so that the 16
partial products are unsigned.) Since 16 'S556s are being
used, then the 32-bit partial products corresponding to all of
the combinations of the partitioned multiplier and the parti-
tioned multiplicand are all available at the same time. Now
comes the crucial aspect of the design, which involves add-
ing all of these bits in atthe appropriate binary positions!

Figure 8 shows the aligned configuration of the partial
products for a 64x64 multiply operation. Each dot represents
an output bit of the 'S556, shown at the topmost part of
Figure 8. To generate the final product. these partial prod-
ucts must be "compressed:' This compression can be
achieved by grouping product bits in a logical manner, so

that "deep and short" vectors are compressed to "shallower
and longer" vectors. What is really being accomplished is the
addition of several (here 3, 5 or 7) bits having the same
weight into a simple binary sum; and then the adding up of all
of these (overlapping) sums, which is normally much easier.
This two-step summation is performed by a "Wallace-tree-
adder" arrangement (r1, r2, r3) in which 7 vectors of varying
lengths are compressed to 2 vectors, and these are in turn
presented as 2 operands to a single carry-Iookahead adder.
The dots shown in the inverted pyramidal array in the middle
of Figure 8 represent compressed outputs generated from
the first level of dots. The lowermost array of dots represent
the inputs to the adder; these are "compressed" outputs from
the Wallace-Tree array.

For example. group A shown in Figure 8 consists of a 3x3
column of bits. If all of these bits were binary "ones" then the
result when they were added would be 3 + (3.2) + (3.4) =
21, which is representable in 5 binary positions. This is pre-
cisely what "A1" signifies; a compression of a 3x3 block, A, to
a 5-bit vector, A1. The compression can easily be achieved
by using a PROM, with the 9 bits of A as address lines, and
the outputs as A1. The PROM used in this example is the
Monolithic Memories 63S481A 30-nsec 512x8 PROM; only
five of the eight output bits are used. Designers may prefer
to group the bits in a different configuration from the one
suggested in Figure 8; many other arrangements are pos-
sible. For example, one may group another column of three
bits and thereby reduce a 4x3 block to a 6-bit vector, using
63S3281s. which are (40-nsec 4Kx8 PROMs); this approach
would give a different pattern than the one in the middle of
Figure8.

Similar compressions for Group B to B1 can be performed
using 63S441/1A 1Kx4 PROMs. This configuration com-
presses five 2-bit vectors to a 4-bit vector, which fits the
10-bit input address and 4-bit output word of the 1Kx4
PROM.

• ••••••••••••••• 0\

l ~.?~ .,..(. .
,..", .

•••• (0 "

~ ~.~.~
~ • .!f. •...•

, .,(0 •.

l"::·!I"'!.. :s.,
~ ':s,

, '.;f..
·:s
l... /.':-"T¥:'

... _ .
::::::::::::::::::::::.::::::::_::::::: A
:::::::::::::::::::::c 8

.•.....
~C1

I'~f' 01
"".

Other compressions shown are C and 0 groups to C1 and
01 respeotively. The C group is handled by compressing five
1-bit vectors to a 3-bit vector. The 0 group is handled by
compressing seven 1-bit vectors to a 3-bit vector. The C and
o groups can be compressed using 'S141/1A 256x4 PROMs.
Similarly, groups E, F,G, and H are compressed to E1, F1, G1
and H1 respectively. All the above mentioned PROMs are
available from Monolithic Memories.

The second level of dots has some groups of four columns.
These four-column groups contain 3 bits in the least-
significant bit position, and 2 bits in the remaining columns.
These 9 inputs can be compressed using a 63S481A 30-
nsec 512x8 PROM, to a vector 5 bits wide. For parts-counting
purposes, the same 63S481A PROM type is used for all the
compressions in the middle of Figure 8.

To aid users in the programming of PROMs for these and
other Wallace-tree applications, or in fact any other applica-
tions exploiting PROMs as logic elements, Monolithic Mem-
ories provides Programmable Logic Element ASseMbler
(PLEASM), a portable computer program written in FOR-
TRAN. PLEASM provides a simple method for generating a
PROM truth table. The user has only to supply equations
which define the arithmetic/Boolean function needed within
the PROM; PLEASM does all the drudgery of figuring out
the code values which are needed in each PROM location.

Sample PLEASM source codes are shown at the end of
this paper. For example, the entire 1Kx4 PROM which
reduces the five 2-bit vectors to a 4-bit vector can be
specified, using PLEASM, in 15 or fewer lines of code. With-
out PLEASM or its equivalent, the user would have had to
specify the contents of 1024 PROM locations, after comput-
ing the corresponding code values for those locations.

Performance Comparisons
The bottom line for any hardware-architecture analysis is
how fast tHe system runs, and what it costs in circuit-board

real estate and dollars. With this understanding, a perfor-
mance table is derived, based on three configurations.

The first is the configuration of Figure 7, using 4 'S556
multipliers; the entire multiplication takes four clock cycles.
In addition to the multiplier ICs, a 64-bit adder is needed for
the four partial products, which effectively furnishes a 80-bit
partial product on every cycle. A 64-bit adder can be used to
do the addition, since the least-significant partial-product
bits are available directly. The 80-bit partial product has to be
shifted 16 bits and then added to the second 80-bit partial
product, which implies a need for a 64-bit register and an
80-bit ALU, which together serve as an accumulator.

The second configuration is the totally-parallel design
using 16 'S556 multipliers plus PROMs and ALUs, shown in
Figure 8.

The third configuration uses TRW-MPY16H-class 64-pin
16x16 multipliers. The entire 32-bit product of an MPY-16H
is available on two successive clock cycles, as the product
lines are shared with the incoming data. An additional 145
nsec is added to the MPY-16H time to allow for the neces-
sary clocking and multiplexing steps to occur: effectively,
the operands cannot be pipelined at one clock cycle as may
be done in the 'S556 architecture. Even if the pin-compatible
Am29516 multiplier is used, a cycle is still wasted, as two
cycles are needed to clock the entire multiplier.

There is one way around this problem, when using the
Am29516 multiplier; twice as many multipliers are used, and
a pair of adjacent multipliers receive the same input oper-
ands. One multiplier of the pair then outputs the least-
significant half of the product, and the other multiplier of the
pair outputs the most-significant half of the product; thus,
the two paired Am29516 64-pin DIPs are functionally a quasi-
equivalent of the 84-pin 'S556, albeit they require many
times the circuit board area.

The analysis in the Table 1 assumes the use of 16 MPY-
16HJ multipliers. 16 16-bit registers are needed to hold the
16 halves of the various different partial products. After the

Fast 64 x 64 Multiplication

16 32-bit products are available, then the Figure 8 configura-
tion is applicable to this case as well. In terms of speed, it is
assumed that the MPV-16HJ multiplier configuration takes a
clock cycle (145 nsec), more than the computed delay. The
computed delay in this case is that of the MPV-16HJ in its
feedthrough mode, followed by that of the compressor array
of Figure 8.

Multiply
Configuration Speed Components Used

64x64 Multiply 4x215 nsec 4'S556s
Serial-Parallel 36 'S381s

11 'S182s
8'S374s

64x64 Multiply 226 nsec 16'S556s
Totally-Parallel Using 27 63S481As (512x8
'S556s 16 63S441s (1Kx4)
(84-pin packages) 33 63S141s (256x4)

32 'S381s
11 'S382s

64x64 Multiply 481 nsec 16 MPV-16HJ
Clocked Parallel 32 'S374s
Using MPV-16HJ 27 63S481s (512x8)
(64-pin packages) 16 63S441 s (1Kx4)

33 63S141s (256x4)
32 'S381s
11 'S382s

Conclusion
The 'S556 16x16 multiplier is an excellent building block for
longer-word length multipliers. It is useful in graphics
systems, array processors, minicomputers, and large main-
frame computers. It surpasses the currently-available 64-pin-
DIP multipliers in that the entire 32-bit product is available
on every clock cycle.

Some configurations which use 'S558-type 8x8 multipli-
ers as building blocks for a 56x56 multiplier are discussed in
r1 and r2.

References
All of the following references are available from Monolithic
Memories, Inc.

r1. "Big, Fast, and Simple-Algorithms Architecture, and
Components for High-End Superminis;' Ehud Gordon and
Chuck Hastings, Monolithic Memories Application Note
AN-111.

r2. "How to Design Superspeed Cray Multipliers with
'558s:' Chuck Hastings, Monolithic Memories Application
Note, incorporated into the SN54/74S557/8 data sheet.

r3. "Real-Time Processing Gains Ground with Fast Digital
Multiplier;' Shlomo Waser, Electronics. 9/29/77.

r4. "State-of-the-Art in High Speed Arithmetic Integrated
Circuits;' Shlomo Waser, Computer Design. 6/1978.

r5. "Doing Your Own Thing in High-Speed Arithmetic;'
Chuck Hastings. Conference Proceedings of the 6th West
Coast Computer Faire. pages 492-510. 4/5/81. Also Mono-
lithic Memories Conference Proceedings reprint CP-102.

Appendix- Sample PLEASM Source Listing - To Reduce Group B In Figure 8
PLEI0P4 PLE DESIGN SPECIFICATION
P5020 VINCENT COLI 08/22/83
FIVE 2-BIT INTEGER ROW PARTIAL PRODUCTS ADDER
MMI SANTA CLARA, CALIFORNIA
.ADD AO Al BO Bl CO Cl DO Dl EO El
.DAT PO PI p2 P3

;M BB CC
;10 10 10

PPPP
3210

COMMENTS
A + B + C + D + E = P

DD EE
10 10

LL LL LL LL
LH LH LH LH
HL HL HL HL
HH HH HH HH

0+0+0+0+0
1 + 1 + 1 + 1 + 1
2 + 2 + 2 + 2 + 2
3 + 3 + 3 + 3 + 3

LLLL
LHLH
HLHL
HHHH

THIS PLEI0P4 PERFORMS PARTIAL PRODUCTS REDUCTION FOR WALLACE TREE
COMPRESSION. FIVE ROWS OF 2-BIT NUMBERS (AI-AO, BI-BO, CI-CO,
DI-DO, AND EI-EO) ARE NUMERICALLY SUMMED TO PRODUCE A 4-BIT RESULT
(P3-PO)•

Al AD}Bl BO FIVE
Cl CO 2-BIT
Dl DO INTEGERS

El EO ())~
~rNorthcon/&335P3 P2 PI PO-..-

4-BIT
RESULT

FIVE 2-BIT INTEGER ROW
PARTIAL PRODUCTS ADDER

PLE10P4 Electronics Show & Convention
May 10-12,1983 .
Portland, Oregon

Cascade Chapter. ERA
Portland and Seattle Sections IEEE

Portland and Seattle Chapters, NWPCA

PROMs yield delayed pulses
maximum clock rate (32 MHz for the example's
74LS193). To generate a delayed pulse from the original
input pulse, program the PROMs to yield a logic Low
upon reaching the desired delay count and a logic High
at the end of the delayed pulse's period.

The delay count equals the desired delay divided by
the clock period. In the schematic shown, you need an
OR gate because PROM A goes through several
intermediate counts before both counters attain the
final delay count. To set up your desired pulse width,

Rick Wegner
Storage Tech Corp, Louisville, CO

If you need a highly accurate, delayed pulse with
adjustable width, the circuit shown in the figure will do
the job. The circuit can operate at repetition rates as
high as 20 MHz, a limitation set by the bipolar PROMs'
access time (in this case, 50 to 60 nsec) and the counters'

DELAYED
PULSE
OUTPUT

DESIRED DELAY: 1.599650 mSEe

DESIRED PULSE WIDTH: 400 "SEe

Obtain accurate pul•• delays and widths with this PROM·based circuit. Tha circuit oparates with clock ratas as hIgh as 20 MHz
and allows you to program very precise pulse parameters. You can extend the scheme's capabilities by adding more counters and
additional PROMs.

Monolithic W ltIIemor/es

generaLe anOLfierpUlse LnaLrepresents Lneaaaea aelay
(equal to the desired delay plus the pulse width).

These two pulses then serve to set and reset a flip
flop that generates a delayed pulse with the pro-
grammed width. You can obtain additional pulses by
using the PROMs' other two outputs. The feedback
resets the circuit so that the next input pulse can start
the delay counting again. A specific program example is
shown in (b).

The design has several modification possibilities. If
you need a longer delay (without sacrificing accuracy),
you can add more counters and PROMs. Moreover, an
8-output PROM allows the generation of more delayed
pulses. If you need smaller pulse widths or more
accurate delays, you can disconnect PROM A's ~

lea m tne scnematlc. l'nIS action allows the <1etermma-
tion of a new set of delay counts, effectively doubling
the input clock-rate capability.

What are the limitations of this circuit? First,
because all address inputs must change simultaneously,
the circuit demands synchronous counters. Second, you
shouldn't use large-capacity EPROMs, because their
increased access time reduces the maximum clock rate,
thus reducing the accuracy of both the delay and the
pulse width. EDIII

High-Speed PROMs with
On-Chip Registers and Diagnostics

A family of High-Speed Registered and Diagnostic PROMs
offers new savings for system designers. The Registered PROM
family features on-chip D-type output registers which are
useful in pipelined systems and state machines. In addition to

output registers, the Diagnostic PROMs feature a Shadow
Register which makes it easier for system designers to include
diagnostics in microprogrammed systems. Architectures and
applications for these devices are discussed in this paper

TWX: 910-338-2376
2175 Mission College Blvd. Santa Clara, CA 95054·1592 Tel: (408) 970-9700 TWX: 910-338·2374

Monolithicrrmn
Memories In.UW

9·29

High-Speed PROMs with
On-Chip Registers and Diagnostics

A family of High-Speed Registered and Diagnostic PROMs
offers new savings for system designers. The Registered PROM
family features on-chip D-type ouput registers which are useful
In plpelined systems and state machines. In addition to output
registers. the Diagnostic PROMs feature a Shadow Register
which makes ,t easier for system designers to include diagnostics
in mlcroprogrammed systems. Architectures and applications
for these devices are discussed in this paper

In digital systems. it is natural to have a PROM followed by a
register. This structure is particularly useful in microprogram-
ming and state machine design The Registered PROM family
includes an on-chip Output Register as illustrated in Figure 1. By
integrating these two building blocks into one chip, the follow-
ing benefits are realized:

1. 2-to-1 chip count reduction
2. PC-Board space saving
3. Reduced power consumption
4. Eliminate the PROM output buffer and register input buffer

and their associated delays.

Figure 1. Registered PROM Block Diagram with
Synchronous Initialization

In addition to the on-chip Output register, the Diagnostic
PROMs include extra circuitry to perform system level diagnos-
tics. DOC (On-Chip). Specifically, a buried Shadow Register
with shifting capability and a 2:1 multiplexer are provided. A
block diagram illustrating the Diagnostic PROM architecture is
given in Figure 2.

Shadow register diagnostics allows observation and control of
all points in a digital system by scanning through the Shadow
Register. As a result, test vector generation is greatly simplified
and a high degree of fault coverage can be easily obtained. A
standalone 8-Bit Diagnostic Register (SN54/74S818 shown in
Figure 3b) is also available. Several references are listed at the
end of this paper which provide a detailed description of diag-
nostic architecture and how to use it, including Session 160fthis
conference (see r4).

ClK----~E OUTPUT
REGISTER

f

Product Families
Registered PROMs

The Registered PROMs are configured in 8-bit wide organiza-
tions with densities of 4K, 8K, and 16K. The following Registered
PROMs are available:

- 512 words x 8-bit memory with both syn-
chronous and asynchronous three-state
enables and preset and clear functions

- 1024 words x 8-bit memory with both syn-
chronous and asynchronous three-state
enables and 16synchronous initialization
words

- 2048 words x 8-bit memory with asynch-
ronous three-state enable and 16 syn-
chronous initialization words

- 2048 words x 8-bit memory with synchro-
nous three-state enable and 16 synchro-
nous initialization words

High-Speed PROMs with On-Chip Registers and Diagnostics

Diagnostic PROMs
The Diagnostic PROMs are configured in 4-bit wide organiza-
tions with densities of 4K, 8K and 16K. The following Diagnostic
PROMs are available:

- 1024 words x 4-bit memory with asynch-
ronous initialization and two asynchro-
nous three-state enables

- 1024 words x 4-bit memory with both
asynchronous and synchronous three-
state enables

- 2048 words x 4-bit memory with asynch-
ronous initialization and asynchronous
three-state enable

- 4096 words x 4-bit memory with asynch-
ronous three-state enable

53/63DA 1643 - 4096 words x 4-bit memory with asynch-
ronous initialization and totem-pole
outputs

Both the Registered PROMs and Diagnostic PROMs are availa-
ble in space-saving 24-pin SKINNYDIP@ (0.3- inch wide) pack-
ages and are specified over both commercial and military
temperature ranges.

Features
Edge Triggered Registers
Data from the PROM is loaded into the Output Register on the

rising edge of the clock. The use of the term "register" ISto be
distinguished from the term "latch." in that a register contains
master-slave flip-flops while a latch contains gated flip-flops. In
other words a register is edge-triggered while a latch IS
level-sensitive The output of a register will chimge only on the
riSing edge of the clock. A latch holds whatever Input data IS
plesent on the falling edge of the clock. The distinguishing
advantage of a register is that its output will only change on the
rising edge of the clock. while a latch becomes transparent
(output follows input) when the clock is HIGH. As a result.
system timing i~ simplified and faster microcycle times can be
obtained.

Asynchronous Programmable
Initial ization
The Output Register can be loaded with a user-programmable
initialization word. Each flip-flop in the Output Register may be
individually programmed to either a HIGH state or a LON state
so that when the Initialize pin (I) is active (LON). the Output
Register will now contain this initialization word. Note that the
initialization operation will occur independent of a clock pulse.
Also. this feature is a superset of a preset and clear function.
Therefore programmable initialization can be used to generate
any arbitrary microinstruction for system reset or Interrupt. This
feature if offered in several of the Diagnostic PROMs.

High-Speed PROMs with On-Chip Registers and Diagnostics

Synchronous Programmable
Initial ization
This feature provides sixteen user-programmable synchronous
initialization words. As illustrated in the Block Diagram (Figure
4), with the synchronous initialize pin (is) LOW, one of sixteen
column words (A3-AO) will be loaded into the Output Register
following the clock pulse and independent of the row addresses
(A9-A4). This is useful for implementing a small (:S16word) reset
or interrupt routine. With all is column words (A3-AO) pro-
grammed to the same pattern, the is function will be independ-
ent of both row and column addressing and may be used as a
single pin control. This feature is offered in several of the Regis-
tered PROMs.

The output of the register is buffered by three-stat'3 drivers
which are compatible with low-power Schottky three-state bus
standards. Thus VOL is 0.5 volts at 10L of 24 mA, VOH is 2.4 volts
at 10H of -3.2 mA, and 10S minimum is guaranteed to be -20
mA. These hefty standards provide ample drive to meet the
requirements of many bus standards.

Synchronous and Asynchronous
Enables
Both synchronous and asynchronous output enable options are
available. The synchronous output enable {ES, see figure 5a},
which is sampled on the rising edge of the clock, is used when
more than one PROM is bused together to increase word
length. In this case the enables effectively become the most
significant address bits and, as such, must be registered just as
data. Stated another way, when the clock goes high, the address
is free to change, requiring enable information to be remem-
bered somewhere. It is most appropriate to store the enable
information. When the enable is not used, or when the outputs
are to be gated onto some type of bus, the registered enable
tends to get in the way. For this reason, the asynchronous output
enable option {E, see Figure5b} is offered to allow direct control
of the enable independent of the clock. For parts which have
both synchronous and asynchronous output enables (see Fig-
ure5c), outputs are enabled if, and only if, ES is LOW during the
last rising edge of the clock and E is LOW.

High-Speed PROMs with On-Chip Registers and Diagnostics

1 OF 128
ROW

DECODER

128.128
PROGRAMMABLE

ARRAY

Figure 4. Block Diagram of 24-pin 53/63RA1681 Registered
PROM. The 2Kx8 Registered PROM Contains Sixteen
Programmable Initialization Words

~~~=~
ClK

ASYNCHRONOUS OUTPUT ENABLE
OUTPUT ENABLE

Figure 5c. Enabling of Outputs for Both Synchronous (E'S)
and Asynchronous (E) Output Enables

Application Areas
Microprogram Control Store
Microprogramming is the technique of using control programs
stored in high-speed memory, such as bipolar PROMs, to
instruct a digital system to perform various functions. A typical
microprogram control store architecture is given in Figure 6.

The Microprogram Sequencer generates the addresses for the
Microprogram Memory which stores the control program. The
Microprogram register assures that all bits change simultane-
ously after the clock pulse and allows for pipelining instruction
fetch and instruction execution. Some bits from the register are
fed back to the sequencer while others are used for system
control. This field of bits is called a Microword.



High-Speed PROMs with On-Chip Registers and Diagnostics

Pipelined Systems
Pipelining is the art of designing digital systems such that delays
associated with causal operations occur in parallel. A complex
operation is divided into several smaller stages which are per-
formed during clock cycles. Just as a widget traveling down an
assembly line, each stage is operating on a piece of information
which the previous stage operated on during the previous clock
cycle. Maximum utilization of the hardware, which translates
into maximum system performance, is achieved when the pipe-
line is full. The fall-through time for any piece of data through the
system is the same (or even longer). but the number of pieces of
data processed per unit time is greatly increased.

Clearly the benefit in pipelining microprogrammed systems is
that instruction fetch and instruction execution times can be
overlapped. Therefore the microcycle time is defined as the
longer of either fetch or execution times, rather than the sum of
both fetch and execution times, as illustrated in Figure 7.

Pipelining can also be used to obtain higher performance in data-
intensive systems such as array processors where a large
amount of data is coming in for processing without passing
through the CPU.1t is very inefficient to hold the next set of data
until the previous data has propagated through all of the logic
blocks in the system (Figure 8a). It is more efficient to pipeline
the system and load new data after the previous data has been
passed to the next block (Figure 8b).

I-MICROCYCLE--I

INSTRUCTION
FETCH

----'MICROCYCLE _I
INSTRUCTION

EXECUTION

Figure 7. length of Microcycle for Pipelined and Non-Pipe-
lined Systems. Note that Delays are Overlapped In
the Pipelined System, While Delays are Summed in
the Non-Pipelined System

---,--
Ipd(blk 1),---,--
Ipd(blk 2)

+tpd(blk3)
-L

Figure 8a. An Example of a Nonpipelined (Fall-through) Ap-
proach to Arithmetic Operation

REGISTER

BLOCK 2

REGISTER

BLOCK 3

Figure 8b. Pipelined Arithmetic Operation. Note That

tpD = MAX [tpD (blk 1), tpD (blk 2), tpD (blk 3)] + tpD (reg)

Programmable Logic Elements (PLE)
Devices
Since the inputs of PROMs are fully decoded and the outputs are
definable for all possible input combinations, PROMs can be
used as logic elements, replacing several levels of logic gates.
PROMs are particularly useful for this application since the
PROM provides a vast number of product terms (2n, where n is
the number of inputs) so that any transfer function can be
implemented in a PROM with a sufficient number of inputs. The
Ouput Register can be used to eliminate static hazards (glitches)
which are normally unavoidable in PROMs. The Monolithic
Memories trade name for high-speed PROMs used for logic is
"PLE" (acronym for Programmable Logic Element). Monolithic
Memories has developed a software tool calied "PLEASM"
software (PLE Assembler) to assist in designing and program-
ming PROMs as PLEs. PLEASM is available for many computers
and may be requested through the Monolithic Memories
IdeaLogic Exchange. References r6, r7 and r8 offer an in-depth
discussion of programmable logic applications for PROMs.

A natural extension of using PROMs as logic elements is to use
Registered PROMs as single-chip State Machines. In a classic
state machine, the present state (or output) is a function of both
the present inputs and the previous state. The combinatorial
logic is implemented in the PROM array and the Output Register
is used to store the state. One or more of the Registered PROM
outputs are connected to address inputs in order to provide the
state of the machine. The abundance of product terms in a
PROM used to implement combinatorial logic translates into an
unlimited combination of states. For example, a 2Kx8 Registered
PROM can implement a 4-input, 8-output machine with any
combination of 128 states. States and inputs can be traded off to
provide a wide range of possible state machines. The program-
mable initialization feature is convenient to initialize the state
machine.



High-Speed PROMs with On-Chip Registers and Diagnostics

Some 4pplication Examples
64-Bit ~icrocontroller
A 4096-wor

1
d by 64-bit wide microcontroller can be constructed

using sixteen 4096x4 Diagnostic PROMs (53/6301641) and one
Programmable Array Logic (PAL®) chip. This controller sup-
plies thirtY1SiX control signals, four status select bits, and two
addresses of twelve bits each (Figure 9) - one for the Next
address and one for the Jump address.

In this design, three PROMs are used to store the Next address
while an additional three PROMs are used to store the Jump
address. Note that three 4-bit wide PROMs provide sufficient
inputs to aejdress the full 4096 words of Microprogram memory.
One PRO~ is used to store four status select inputs to the PAL
device which is used as a multiplexer for test conditions.
A PAL 16C1 logic circuit or PAL20C1 device is ideal for this Test
Mux since these parts provide many inputs (16 and 20 respec-
tively) and complementary output (both true and inverted)
polarities. The remaining nine PROMs are used to store the
36-bit Microcontrol word. Note that a Microprogram sequencer
is not used in this architecture.

The Microcontrol signals control various parts of the CPU and
other external blocks such as memory and I/O. For certain
microinstructions, some operations may involve a Jump. The
4-bit status select PROM will select a status bit from the test
conditions to a pair of complementary outputs which will enable
either the Next address or the Jump address. The address
enabled will point to the Next microinstruction in the bank of
PROMs. If no conditional Jump is needed, both the Next address
and the Jump address will be the same.

For example, a Jump will be performed if bit 11 of the test
conditions is set; the status select bits will be 1011 (which
represent 11) and the status to be tested and its complement will
appear on the outputs of the PAL device. Noting that the output
enables of the Diagnostic PROMs are active LOW, the true PAL
device output controls the NEXT address PROMs, while the
inverted PAL device output controls the Jump address PROMs.
If the test status is TRUE, the PAL device output disables the
Next address PROMs while the inverted PAL device output
enables the Jump address PROMs. The reverse will occur when
the test status is FALSE. This NexVJump decision is illustrated in
Figure 10.

SOl

MODE

DCLK

1=2 12~4
NEXT JUMP t'O

CONTROLS

DECISION MADE
BY TEST MUX
(NOTE BOTH ADDRESSES
ARE ARBITRARY)

Figure 10, Microprogram Memory Map Illustrating the Next
Address/Jump Address Decision Made by the Test
Multiplexer

1
fMAX =

lsu + tCLK + tpD + tpxz

lsu = address setup time for the diagnostic PROM
tOLK = clock to output delay of the PROM

tpD = propagation delay in the outside logic
tpxz = output enable/disable delay for the diagnos-

tic PROM.

Note that the decision time can be decreased if the NexVJump
decision is made one clock cycle ahead and stored using a
synchronous enable. This scheme will reduce the decision time
by an amount equal to the propagation delay through the PAL
Test Mux, but microcoding this system will become much more
complex.

Fewer PROMs would be required if an even/odd Jump address
scheme were used (such as only allowing Jumps to certain
paragraphs), however this decreases the fleXibility of PROM
addressing.

In the data path, a Registered PROM can be used to implement
complex functions such as a Pseudo Random Number (PRN)
Generator. PRN sequences are useful in encoding and decoding
of information in signal processing and communication sys-
tems. They are used for data encryption in secure communica-
tion links, and error detection and correction codes in data
communication systems. PRN sequences are also utilized as
test vectors for testing digital systems and as reference white
noise in many signal processing applications.



There are many techniques for generating PRN sequences. The
most common technique is to use un" stages of linear shift
registers with feedback paths to determine a polynomial which
characterizes a PRN sequence. Figure 11 illustrates a typical
mechanism for generating PRN sequences.

The advantage of using a PROM (or PLE) device for imple-
menting PRN sequences is that any polynomial can be quickly
customized in it. In data encryption systems where the code is
frequently changed for protection from mischievous eaves-
droppers, a PROM can be used to generate a new code each time
or several codes can be implemented in the same PROM.

Figure 11. An "n" Stage Linear Feedback Shift Register (LFSR).
The PRN Sequence Generated is Characterized by
a Polynomial of Degree n. The Feedback Terms and
Logic Functions Determine its Binary Coefficients

STATES 00 01 02

so 0 0 0
S1 1 0 0
S2 1 1 0
S3 0 1 1
S4 1 0 1
SS 0 1 0
S6 0 0 1
so 0 0 0

OUT SEOUENCE:
1011000

""---"
SECTION OF PLE10RA8

PRESENT STATE NEXT STATE

PLEASM
EQUATIONS

FFO FF1 FF2

o 0 0
o 0 1
o 1 0
o 1 1
1 0 0
1 0 1
1 1 0
1 1 1

02: = 01
01: = 00
00: = 01002 __

= 01 02 + 0102

Figure 12. A Three-Stage Pseudo Random Number Generator
Implemented in a Registered PROM (PLE)



High-Speed PROMs with On-Chip Registers and Diagnostics

An example of a PRN generator implemented in a Registered
PROM is shown in Figure 12. A linear 2-input XOR function is
used to generate a PRN sequence characterized by a polynom-
ial of degree 3. The PRN sequence is of maximum length with
period 7.

Cyclical Redundancy Check (CRC) is widely used for Error
Detection in data communication. Both serial and parallel CRC
can be performed depending on the nature of application.
In serial data transfer on Local Area Networks, or between
peripheral and main memory, serial CRC is the preferred and
perhaps the most efficient technique. However, systems em-
ploying wide data buses for high-speed short-distance data
transfer require a high-speed mechanism of ensuring data
integrity. In these applications, parallel CRC might be the better
alternative.

The implementation of an M-bit parallel CRC is more complex
than its serial counterpart. Although both use Linear Feedback
Shift Register (LFSR) configurations, the parallel implementa-
tion requires M-bit carry look-ahead circuitry to process the M
data bits simultaneously (see reference r9). The equations for
this carry look-ahead represent the output of each stage in the
LFSR after every shift of an M-bit string of data. These equa-
tions contain a large number of XOR operations which make it
very efficient to implement in a Registered PROM.

GENERATOR
POLYNOMINAL

G(X) = x16+ X12+ X5+ 1

0=)D

G-~ CLK

LEPRESET

To illustrate with a practical example. Figure 14 shows the
serial implementation of the CRC generator polynomial

G(X) = X16 + X12 + X5 +1

also called the CRC-CCITT standard. Figure 16 shows the 8-bit
carry look-ahead equations for an 8-bit parallel CRC implemen-
tation of the same polynomial. These equations are derived in
reference r9. where an implementation in four PAL devices is
also shown with a maximum delay of 90 ns. Figure 15 shows an
implementation in only three Registered PROMs and one SSI
chip. The maximum delay is 50 ns.

The speed of operation of parallel CRC implemented in Regis-
- tered PROMs will remain the same for any generator polynom-

ial and M. Increasing the complexity of the carry look-ahead
equations only increases the number of devices required to
implement them. It does not increase the delay.

DO-D7~

INIT-

OE-
CLOCK

a-BIT PARALLEL
CRC

(CRC-CCITT)
3 PLE DEVICES

1 SSI CHIP



VCC
XsA7 AS 14

AS Ag
X12

AS A10

X1
A4 IS

~
A3 2KxS E
A2 PlE11RAS ClK X12~ A1 (S3RA1SS1A) 07 14~ AD Os

Xo
Os ~ NC

°0 °4 ~1~01 CHIP1 °3

1~02 GND

VCC 4-A7 AS NC
AS Ag ~

X14
AS A10

~
A4 Is
A3 2KxS E"

~
A2 PlE11 RAS ClK X13
A1 (S3RA 1SS1A) 07 NC!:!£...
AD Os

~2 -
Os ~

X1 NC
Xs °0 °4 ~
X10 °1 CHIP2 °3

°2
GND

VCC
X1SA7 AS
X14

AS Ag
X7

AS A10

Xo A4 Is

~
A3 2KxS E"
A2 PlE11 RAS ClK X7XlO
A1 (S3RA1SS1A) 07Xs X14
AD Os X, •.

~
Os Xs

°0 CHIP3 °4 ERFLAG 3~ °1 °3X3
°2
GND

ERROR FLAG: = X1 + X2 + X3 + X4

Xs + X7 + Xs + Xg

CLOCi< iNiT
X11 + X12 + X13 +
-

+ Xs +

+ X10+

X14 + X1S +

Figure 15. Diagram Showing How to Connect Three Registered PROM (or PLE) Devices Together to
Implement 8-Bit Parallel CRC. The Error Flag is Valid on the Next Clock Pulse After All the Data
Has Been Clocked In



High-Speed PROMs with On-Chip Registers and Diagnostics

XO (n + 1):= X8 (n) al X12(n) al D(3) al D(7) chip1
X1 (n + 1) := X9 (n) al X13(n) al D(2) al D(6) chip2
X2 (n + 1):= X10(n) al X14(n) al D(1) al D(5) ...•..•......................... chip3
X3 (n + 1):= X11(n) al X15(n) al D(O) al D(4) chip3
X4 (n + 1) := X12(n) al D3 chip1
X5 (n + 1) := X8 (n) al X12(n) al X13(n) al D(2) al D(3) al D(7) chip1
X6 (n + 1) := X9 (n) al X13(n) al X14(n) al D(1) al D(2) al D(6) chip2
X7 (n + 1) := X10(n) al X14(n) al X15(n) al D(O) al D(1) al D(5) chip3
X8 (n + 1) := XO (n) al X11 (n) al X15(n) al D(O) al D(4) chip3
X9 (n + 1) := X1 (n) al X12(n) al D(3) chip1
X10(n + 1):= X2 (n) al X13(n) al D(2) chip2
X11(n + 1):= X3 (n) al X14(n) al D(1) chip2
X12(n + 1) := X4 (n) al X8 (n) al X12(n) al X15(n) al D(O) al D(3) al D(7) chip1
X13(n + 1) := X5 (n) al X9 (n) al X13(n) al D(2) al D(6) chip2
X14(n + 1) := X6 (n) al X10(n) al X14(n) al D(1) al D(5) chip3
X15(n + 1):= X7 (n) al X11(n) al X15(n) al D(O) al D(4) chip3

where Xi (n + 1) is the next state value of the corresponding
register i, i = 0, ..., 15

Xi (n) is the present value of the corresponding
register i, i = 0, ..., 15

D (n) is the parallel input data bits, where n = 0, .... 7

Figure 16. Carry Look-Ahead Equations for 8-Bit Parallel CRC with G(X). The Equations
are Partitioned into Parts for Efficient Implementation in Three Chips

Summary
There are many interesting applications for high-speed Regis-
tered and Diagnostic PROMs. The integration of a Shadow
Register in the Diagnostic PROM greatly simprifies system level
diagnostics.

Acknowledgements
The Pseudo Random Number Generator and the Parallel CRC
application design examples originated from Zahir Ebrahim and
Vivian Kong, colleagues of ours at Monolithic Memories. These
two applications are reprinted from Monolithic Memories Appli-
cation Note AN-126 (see reference r6).

..... THE DIAGNOSTIC ~ AHll DIAGNOSTIC 1Il6lSTUS
M£IJ' 'IOU TO~ YU ~0Ull S~STlMS

CONVENIENTL'I ' ... "

References
r1. "Shadow Register Architecture Simplifies Digital Diagnosis"

John Birkner, Vincent Coli and Frank Lee. Monolithic
Memories Application Note AN-123.

r2. "New PROM Architecture Simplifies Microprogramming"
John Birkner. Vincent Coli and Frank Lee. Electro 1983,
Session 24.

r3. "Testing Algorithms for LSI PALs", Imtiyaz Bengali and Vin-
cent Coli, Wescon 1983, Session 13.

r4. "Diagnostic Devices and Algorithms for Testing Digital Sys-
tems" Imtiyaz Bengali, Vincent Coli and Frank Lee, Electro
1984, Session 16.

r5. "Registered PROMs Impact Computer Architecture" John
Birkner, Monolithic Memories Application Note AN-107.

r6, "PROMs and PLEs: An Application Perspective" Zahir
Ebrahim, Monolithic Memories Application Note AN-126.

r7. "High Speed Bipolar PROMs Find New Applications as Pro-
grammable Logic Elements"Vincent Coli and Frank Lee, 9th
West Coast Computer Faire 1984.

r8. "PLE Programmable Logic Element Handbook" Monolithic
Memories, Inc.

r9. "Implementation of Serial/Parallel CRC Using PAL Devices"
Vivian Kong, Monolithic Memories Application Note AN-125 .

PAL· (Programmable Array Logic) and SKINNYDIP>Ii) are registered trademarks of Monolithic Memories.
DOC'·, PLE'" and PLEASM'" are trademarks of Monolithic Memories.



Monolithic W Melllories



Diagnostic Devices and Algorithms for
Testing Digital Systems*

A new concept called Diagnostics-On-Chip (DOC) was intro-
duced in the industry recently. A series of new products with
shadow register diagnostic capability is coming. These new

products use this new concept and will provide a cost-effective
solution to the issue of testability for digital systems.

*' ThiS paper lsa slightly modlfled verSion of the paper by the same name which appeared In the Electro 84 Professional Program Session Record. Session 16 reprint.
paper 16 1 15-17 May 1984

TWX: 910-338-2376
2175 Missi n College Blvd. Santa Clara. CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

Monolllhlcmrrn
Memories InJn.LI

9·41



Testing Digital Systems

A new concept called Diagnostics On-Chip (DOC) was intro-
duced in the industry recently. A series of new products with
shadow register diagnostic capability is coming. These new
products use this new concept and will provide a cost effective
solution to the issue of testability for digital systems.

In developing a digital system, cost is a very sensitive issue. For
the OEMs, cost itself can be categorized as R & D, manu-
facturing, marketing, testing and maintenance costs, etc. The
strategy is to reduce the overall cost for a system. Since
marketing cost is about the same for all systems of a certain type
and R & D cost is a one-time expense, it will be beneficial to put in
diagnostic features to reduce the future expense in testing and
maintenance.

If a large system goes down, it will not be practical to test all the
chips individually. An alternative is to have built-in test circuits. If
an error occurs, it can be located by running a test sequence
through the system. It will definitely save a lot of time and expense
compared to using tens or hundreds of man hours to debug the
system manually.

The test problem has two major facets:
1. Test generation.
2. Test verification.

Test generation is the process of determining the test sequence for
a circuit which will demonstrate its correct operation. Test verifica-
tion is to prove that the circuit works with the test vectors. Fault
simulation has been the best technique of yielding a quantitative
measure of test effectiveness. Test sequences are automatically
generated and verified in the circuit after simulating a single
"stuck-at-type" offault in it. By observing the circuit outputs, faults
can be detected and a quantitative measure of test effectiveness
can be evaluated.

This technique is efficient for testing combinatorial circuits,
especially smaller circuits where the test sequence is trivial. For a
more complex circuit, many techniques are available, such as
D-Algorithm, Compiled Code Boolean Simulation and Adaptive
Random Test Generation.

The techniques for combinatorial circuits are inefficient and
ineffective for sequential circuits. As a first approximation, one
can treat a sequential circuit as being purely combinatorial
within each clock cycle and test it with the above techniques for
a particular state. Every timethe machine makes a transition to a
new state, the test sequence is different. This is a very costly way
of testing the circuit, especially if it has many states. Moreover,
one should have the knowledge of initial state, illegal states, and

sequences to bring the machine out from an illegal state into a
known state. All these problems pertaining to testing of sequential
circuits have given rise to the concept of "design for testability".

The key concepts are CONTROLLABILITY and OBSERVABILlTY.
Control and observation of a network are essential to implement
its test procedure. Various designs for testability methods have
evolved in the last five to six years. All of these methods have the
same objective-to be able to control and observe critical points in
a network. These techniques allow test generation problems to be
completely reduced to the generation of test vectors for combina-
torial logic.

:=D-c

In orderto test for astuck-at-1 (sa1) fault, it is necessary to put'A'
to '0', 'B' to '1', and observe output 'C' for '0' or '1'. If '0' is observed
at C, then the AND gate is good forsa1 fault; otherwise there is a
fault. In order to fUlly test the AND gate, the following test
vectors are to be exercised:

ABC

o 1 0 } Detect sa1
100
1 1 1 } Detect saO

Table 1. A Set of Test Vectors Fully Covering all Stuck-At-Faults
of the AND Gate in Figure 1

As the circuit becomes more complex, it is more difficultto control
and observe every signal path. Thus, it becomes essential to give
serious thought to the testability of the circuit through the design
phase. One approach is to adopt structured design methodology.
Ideally, this means that the design is totally synchronous with the
system clock.

Most structured design practices are built upon the concept that
if the values in all ofthe registers can be controlled to any specific
value, and if they can be observed with a straightforward opera-
tion, then the test generation, and possibly the fault simulation
task, can be reduced to doing test generation and fault simulation
for a combinatorial network. A control signal can switch the
memory elements from their normal mode of operation to a
mode that makes them controllable and observable.

TWX: 910-338-2376
2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

9·42

NlonoIithicl!T!n
Memories uurw



A simple but effective way to convert a sequential network to a
combinatorial one is by breaking the feedback loop and inserting
the test data in place of the sequential data in the feedback
registers.

Figure 2b. The Feedback Path on the Sequential Network is
Broken in Order to Reduce the Network to a
Pseudo-Combinatorial One

There are many methods of design for testability practiced in the
industry, like LSSD, ScanPath, Scan/Set, Random Access, and
BILBO. All of these technique3 require additional hardware,
mostly shift registers, in order to input test sequences and to
observe critical points in the circuit. It appears that additional
cost in terms of special hardware has to be incurred for
designing testability and structured design. But since the cost of
hardware is declining, the trade-off is advantageous in the
reduction of testing cost of bigger circuits.

Moreover, the circuit is well monitored and documented. Thus
when the boards are in the field, and if there is a fault in a
particula board, each block of the circuit can be monitored
efficiently and the fault can be easily diagnosed, thus reducing
maintenance cost in the future.

There are two basic methods to load in test vectors: parallel
loading, and serial scanning.

Parallel loading of data in and out requires very wide input and
output buses and is not worthwhile. Besides, it would not be
effective )0 store and analyze the results. Built-in digital circuit
observer (BIDCO) is a modified example of parallel loading of
diagnostic data using a pseudorandom number generator to
generate test vectors.

Serial scanning needs several clock cycles to load in or shift out
the test re~ults. It may take several minutes to run all the diagnostic
vectors through the system. Considering the time needed to
analyze the results and repair, the time taken to run the
diagnostic vectors is insignificant. Examples of serial scan
diagnostics techniques are level-sensitive scan design (LSSD)
and Diagnostic-an-Chip (DOC). LSSD involves shifting of

diagnostic data into latches, testing the system with that data
and then shifting out the test result. DOC uses a buried register,
called a shadow register, through which diagnostic data is
shifted in and out.

For the LSSD, outputs from the microcontrol store will contain
some intermediate data when diagnostic microinstructions are
shifted in and test results are shifted out. If several control
signals are used to drive several ports on the same bus, it is
possible that more than one port may be enabled at the same
time by the intermediate data (as shown in Figure 4), thus
creating a bus fight. The result may be hazardous to your
system. Other hazards such as disk crashes are also possible.
Designing with LSSD forced compromises in system design.

SHIFT IN

LOADI
SHIFT

Figure 3. serial Scanning Techniques Simplify Testing by
serially Shifting in Test Data and Shifting Out Test
Result

Y BUS
Figure 4. Potential Bus Fight May Appear as Port A and Port B

may Both be Enabled when Test Data or Result is
Shifted Through the Register Bits (Also Called
Three-State Overlap)

If the diagnostic data is shifted into some buried registers which
are not directly tied to the control lines, the above problem can be
avoided. This is the concept of Diagnostic-an-Chip (DOC) which
uses shadow register diagnostics.

An additional feature for a shadow register is to permit test vectors
to be shifted in during normal execution, which means it is not
necessary to hold up the system too long in order to perform
diagnosis.

A shadow register is basically a buried register with shift
capability (Figure 5). There is also an output register whose



outputs appear to the rest of the system. Each output flip-flop
has an associated flip-flop in the shadow register. An output
flip-flop drives a three-state buffer before going to the output pin.
If the output is disabled, the output pin may be converted to an
input pin. This feature is very important if the output is driving a
bus and sampling of data on the bus desired.

OUTPUTS
B LINES, BI-DIRECTIONAL
(IF OUTPUT BUFFERS ARE

THREE-STATE)

The input to any bit of the output register is multiplexed from one
of two sources:
1) The less significant bit location in the shadow register (or SOl for
the least significant bit). This operation is just a simple shift register.
2) The same bit location in the shadow register.
3) Data on the output pin at the same bit position. This data may be
the output of the corresponding bit of the output register if there is
no output enable pin or ilthe output is enabled, or the input to that
pin if there is an output enable pin and the output is disabled.

Function Table

The input to a bit of the shadow register is multiplexed from one
of three sources:
1) The corresponding input bit from the memory array.
2) The corresponding bit location in the shadow register.

Since the data shifted in during the diagnostic mode does not
appear on the output bus, the system will never see the interme-
diate results of the serial shift. Therefore, all control signals will be
valid and the hazards associated with lSSO are eliminated.

With this concept in mind, a new standard for upcoming system
diagnostics can now be presented.

One very significantfeature of the diagnostic parts is their cascad-
ability. Diagnostics is not done very frequently. Therefore, it is very
costly to put many data and control Jines and les on a board just
fortesting. One way to minimize the cost is by having one input line
and one output line and shift in all the bits serially. This means that
the SOO of a diagnostic chip must be able to connect to the SOl of
another diagnostic chip. Noting that SOl can be both the data input
or the control input, SOO must contain the most significant bit of
the shadow register if SOl is the data input, and must pass the
content of SOl if SOl is used as a control signal.

There is only one data input and one data output to the diagnos-
tic parts. When serial data is shifted in or shifted out, data has to
be passed from one diagnostic chip to another. Since SDI must
be passed from chip to chip (if it is used for control). it is
necessary for logic designers to make sure the fall-through time
of SCI to the last chip and the setup time from SDI to DClK are
satisfied.

The Diagnostic Ie Family
A family comprised of 4K, 8K and 16K Diagnostic PROMs
(DPROM) with 4-bit output organizations and 8-bit Diagnostic
Register is available from Monolithic Memories. These devices
are packaged in industry standard 24-pin SKINNYDI~ (0.30-
inch wide) packages and are specified over both commercial and
military temperature ranges.

INPUTS OUTPUTS
OPERATION

MODE 501 ClK DClK 03-00 53-SO 500

l X I * On- PROM HOLD S3 load output register from PROM array

*
Sn - Sn-1

l X I HOLD S3 Shift shadow register data
SO- SOl

Sn - Sn-1 load output register from PROM array
l X 1 I On- PROM S3

SO- SOl while shifting shadow register data

H X I * On- Sn HOLD SOl load output register from shadow register

H l * I HOLD Sn- On SOl load shadow register from output bus

H H * I HOLD HOLD SOl No operationt



The Diagnostic component series consists of the following
products (see Figure 6 below for the Logic Symbols):

53/63DA441 - 1024 words x 4-bit memory with asynchronous
initialization and two asynchronous three-state enables

53/63DA442 - 1024 words x 4-bit memory with asynchronous
initializ'1tion and both asynchronous and synchronous three-
state enables

53/63DA841 - 2048 words x 4-bit memory with asynchronous
initialization and asynchronous three-state enable

53/63DA 1641 - 4096 words x 4-bit memory with asynchronous
three-state enable

The introduction of the DPROMs and diagnostic register results
in a new standard for diagnostics. Noting that the diagnostic
devices need controls over two independent registers and a
multiplexer, a number of overhead pins are necessary. These
overhead pins must be defined in a way that the diagnostic parts
can be cascadable.

The diagnostic ICs need the following pins in addition to those
used in a similar part without the diagnostic features:
1) Diagnostic Clock (DCLK)- The diagnostic clock is used to
clock the shadow register.
2) MODE-This pin is used in selecting the data to the registers.
For the output register, MODE = LOW indicates that the output
register is being used as a normal register; MODE = HIGH indi-
cates that the next state of the output register will be obtained from
the shadow register. For the shadow register, MODE = LOW
indicates serial data from SOl (see below) is shifted in every
diagnostic clock; MODE = HIGH switches SOl from a data input to
a control input. See below for details.

53/63DA 1643 - 4096 words x 4-bit memory with asynchronous
initialization and totem-pole outputs

SN54/7 S818 - 8-bit register with asynchonous three-state
enable and write-back capability to the inputs, basically for
loading of writeable control store (WCS). Even in the case of
non-writeable control store, diagnostic registers should also be
used in breaking the loops of the sequential system

53/63QA441 53/63DA442

vcc

AS

A9

E1

E2

00

01

02

03

SDO

ClK

53/6301641

VCC

AS

A9

Al0

All

E

00

01

02

03

SDO

ClK

53/63DA841

vcc

AS

A9

Al0

E

00

01

02

03

SDO

ClK G
SN541745818

vcc

MODE

80

81

82

83

B4

B5

B6

87

SDO

ClK

9-45

VCC

A6 AS

A5 A9 AS

E

A3 ES A3

A2 A2

00

AO 01 AO

MODE 02

DClK 03 DClK

SDO

GND ClK GND

Figure 6. The Diagnostic Ie Family



3) Serial Data In (SDI)-When MODE = lOW, this pin is used for
shifting serial data in. When MODE = HIGH, SOl serves as a
control pin. If MODE = HIGH and SOl = lOW, data from the
output pins will be loaded to the shadow register on the next
DClK. MODE = HIGH and SOl = HIGH indicate a reserved
operation for diagnostic PROMs, and is used for write-back for
the diagnostic register.
4) Serial Data Out (SDO)-When MODE = lOW, this pin carries
the shift-out bit of the shadow register. When MODE = HIGH,
the SOl becomes a control pin and the control signal should be
passed along if several diagnostic parts are connected together
serially. So SDO should carry SOl along in this case

This standard is being used in designing all current and future
diagnostic devices.

Some Applications Examples
A simple controller can be constructed using Diagnostic PROMs
together with other functional blocks such as the arithmetic
logic block and peripheral control. The Diagnostic PROMs serve
two purposes-sequencing the address of the microinstruction
and controlling the rest of the system.

The sequencing field of the control store contains two addresses
for sequential and jump addressing modes. The selection of the
next address depends on the current status of the CPU. The
arithmetic logic block and 1/0 control will give certain status bits
which will be selected by the status multiplexer. The status
multiplexer is controlled by certain bits of the microprogram
control word. It should have complementary outputs so that one
and only one of the addresses will be selected at any time of
operation of the controller. A PAl@ device with complementary
outputs will normally provide a cost-effective solution to this
multiplexer.

A continue statement can be implemented by having both
addresses programmed to the next sequential address while an
unconditional jump can be done by programming both ad-
dresses to the Jump address.

The control PROMs provide signals to control various functional
blocks of the controller and other external blocks such as
memory and 1/0.

Since the other functional blocks such as the arithmetic logic and
1/0 control of the system also have sequential logic. it may be
necessary to break the loops in those blocks so that diagnosis can
be done on the whole system. The diagnostic registers can be
incorporated in those blocks in places such as the registers (say.
memory address registers. memory data registers. and instruction
registers. etc.) The diagnostic data and result shifted into and out
of the CPU can also be shifted through the diagnostic registers.

Another more detailed example of how the diagnostic parts can
be built into a system begins in Figure 8. The system consists of
blocks like CPU, main memory, auxiliary memory, and 1/0 ports.
These functional blocks are normally independent of each other
as far as testability is concerned.

An example of a CPU is given in Figure 9a. The diagnostic parts
are used to substitute the instruction register. memory data
registers. status register, memory address registers, and the
microprogram control store. The only additional block to a
typical system without diagnostic features is the diagnostic
controller. The diagnostic controller should be able to supply
the system with signals like MODE, SOl, DClK. and the register
clock (ClK). In other words, the diagnostic controller in itself is a
supercontroller of the processing unit. It should also be noted
that all feedback paths, except those for the register files, are
broken.



<---------~

<----------



<-----~~---~~~-
Figure 9c. Shifting on of Test Vector. Dotted Lines Represent Data Flow in the CPU if the

Loading of Test Vector is Hidden in Normal CPU Operations

<r-----=~---->
Figure 9d. After the Last Bit ofthe Test Data is Shifted In, the Output Registers Will be Loaded

With the Test Vector Which Will be Used to Testthe System (Control the System)



<---- --->

<----~~---~
Figure ge. The Test Result is Then Loaded Back Into the Output Register (Observe the

System)

<----------
Figure 9f. The Test Result is Shifted Out at the Same Time the Next Test Vector is Shifted In.

Again Dolled Lines Represent Data Flow in the CPU if the Loading of Test Vector
is Hidden in Normal CPU Operations



In normal operation, the diagnostic controller will inactivate the
diagnostic feature by setting MODE = LOW and disabling DCLK
and have the CLK free running.

MODE SOl OClK ClK OPERATION

L X X t Normal operation

L 81,1 t ..
Shift-in bit 1 of first test vector

L 81, n I
..

Shift-in bit n of first test vector

H L · I Load first test vector to output

L X X t Load test result to output register

H L t · Load test result to shadow register

L 82,1 t .. Shift-in bit 1 of second test vector and shift-out test result

L 82, n I
.. Shift-in bit n of second test vector and shift-out test result

H L · t Load second test vector to output

L X X I Load test result to output register

H L I · Load test result to shadow register

L 8m, 1 1
.. Shift-in bit 1 of last (mth) test vector and shift-out test result

L 8m, n t .. Shift-in bit n of last (mth) test vector and shift-out test result

H L · t Load last test vector to output

L X X 1 Load test result to output register

H L t · Load test result to shadow register

L X t X Shift-out test result

L X I X Shift-out test result

t Indicates a rising edge of the corresponding clock.
* Clock must be steady or falling

• * If diagnosis is to be performed embedded in regular CPU cycle. elK should also be clocked. If not. elK should be steady or falling.



A block diagram of a simple diagnostic controller is shown in
Figure 10. The central control unit of this controller may be a
disk-based unit or even another PROM. Since in normal oper-
ation MODE remains lOW and only ClK is active, it is possible to
include a switch in Figure 10 so that the diagnostic controller will
be inactive (see Figure 11).

RESET __

OTHER
CONTROl--

SIGNALS

CLOCK

CENTRAL
CONTROL

UNIT

RESET MODE

OTHER SOl
CONTROL

SIGNALS OClK

ClK ClK

SOO

Figure 11. Including a Switch to Disconnect the Diagnostic
Controller from the CPU

Some Final Thoughts
More complicated systems may have co-processors, DMA, I/O
ports, etc., in addition to the CPU. A top-down approach will be
very efficient in testing such systems by first locating the defective
board, followed by the locating of the defective part in that board.

The diagnostic PROMs and registers can also be used in mini-
computers, data storage devices, and peripherals.

Besides being used for diagnostics, the serial shifting feature
present in a diagnostic component can also be applied to serial
character generators, other serial to parallel and parallel to serial
converters, serial code generators, etc.

1. John Birkner, "Registered PROMs Impact Computer Archi-
tecture," Monolithic Memories Application Note AN-107.

2. John Birkner, Vincent Coli and Frank lee, "Shadow
Register Architecture Simplifies Digital Diagnosis," Mono-
lithic Memories Application Note AN-123.

3. RA Rasmussen, "Automated Testing of LSI" IEEE Com-
puter Magazine, pp. 69-78 (Mar. 1982).

4. Thomas W. Williams and Kenneth P Parker, "Testing Logic
Networks and Designing for Testability," IEEE Computer
Magazine, pp 9-21 (Oct. 1979).

5. John Birkner, Vincent Coli and Frank lee, "New PROM
Architecture Simplifies Microprogramming" Electro 1983,
Session 24.

6. Frank lee, Vincent Coli and Warren Miller, "On-Chip
Circuitry Reveals System's Logic States" Electronic Design
pp. 119-124 (Apr. 14, 1983).



ROW CURRENT
SOURCE AND

PROGRAMMING
CIRCUITRY

ROW
INPUT

BUFFERS

COLUMN
INPUT

BUFFERS

SYNCHRONOUS
INITIALIZE

BUFFER

SYNCHRONOUS
ENABLE
BUFFER

COLUMN
CURRENT
SOURCE

AND
PROGRAMMING

CIRCUITRY

FIXED
"AND"

COLUMN
ARRAY



A Compiler for Programmable Logic in FORTH*

This paper describes the implementation of a very compact
compiler, written in the FORTH language, which is used as a
design aid in the generation of digital systems using Program-
mable Array Logic elements (PAL@) devices. The compiler

produces a fuse map for generation of a target part from an
algebraic description of the inpuVoutput relationships. Many of
the techniques used are applicable to other areas.

* This paper is a slightly modified version of the paper by the same name which appeared in the 1982 FORML Conference Proceedings, pages257-265, 6-8 October 1982;
available from the FORTH Interest Group, P.O. Box 1105, San Carlos, CA 94070. (FORML stands for FORTH Modification Laboratory.)

PALe is 8 registered trademark Of Monolithic Memories.

TWX: 910-338-2376
2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

MonollthlemMemorIes
9·53



A Compiler for Programmable Logic
in FORTH

Background
The schematic diagram of a typical PAL device is shown in
Figure 1. Note that this part contains multiple logic device
elements and outputs from gates or flip-flops. Each intersection
in the matrix on the left represents a connection made by a fuse.
These fuses may be blown (one time only) to customize the part
for a particular application. The digital-system designer writes a
set of Boolean equations for the outputs as functions of the
inputs. This is most conveniently done using signal names from
the application as shown in Figure 2. These expressions must be
translated into a hexadecimal data file for transmission to a
"programmer" test instrument, capable of blowing the undesired
fuses to produce the target part.

It is not impossible to encode this data manually, butthe process
is tedious and provides considerable opportunity for error.
A FORTRAN program (PALASM'") is available, but FORTRAN is
not usually available on microprocessor-based development
systems, and the used of remote systems is not convenient. For
the above application and for the reasons stated, the program
PAL device was implemented in FORTH.

The PALs device program uses the same concept as many of the
FORTH-based assemblers: namely, an environment is created
which allows the source data to be interpreted directly. As in the
case of the assemblers, this approach led to a surprisingly short
program.

In a FORTH-style assembler, a single pass is made of the source
data. The interpreter must be able to process each element of
the input stream as it is encountered. In an assembler, each of
the operation-code mnemonics is an executable word, whose
function is to generate a particular machine-language instruc-
tion.ln PALs, when the logical expressions are interpreted, each
of the signal names is an executable FORTH word. The function
of an output signal name is to make the row of fuses associated
with its first term current, and to set all of the fuses in this row to
be blown. The function of an input signal name is to cause the
fuse to be spared which is at the intersection of the current row
and the column associated with the named input. The output of
the PALs program is the fuse map, which is created in its final
format by the interpretation of the logical expressions. The fuse
map for the application of Figure 2 is shown in Figure 3.

All of the signal names must be defined before the logical
expressions are encountered by the interpreter. Since the rows
and columns of the matrix are associated with specific pins of
the PAL device, the signal names are created by the declarations
which associate signal names with pins. When the declarations
are interpreted, the pin numbers (i.e., the words 1.-20. and not
the integers 1-20) have already been defined. Pin numbers are
defining words whose function it is to create signal names.

The various types of PAL logic circuits differ in number of inputs
and outputs. For this reason, the various PAL type are executa-
ble words. The function of a PAL type is to cause the appropriate
set of definitions for pin numbers to be placed in the dictionary.
For this reason, the PAL type is executed before any of the
pin/signal declarations.

The only word which precedes the PAL type in the input is the
word PALs. While this happens to be the name of the program, it
is also an executable word whose function it is to make PAL the
current and context vocabulary. A PAL logic circuit contains
definitions for all of the PAL type, and for Boolean operators in
the FORTH vocabulary.

Details
The 16R4 was selected as an example (Figure 1) because it
contains most of the features found in the PAL device family,
inclUding: input signals which are available in both true and
inverted forms, gate outputs which may have individual three-
state controls, and clocked outputs. As shown in the example,
the output signals are connected to columns in the fuse matrix,
and may therefore be used as inputs. Many of these features
require some consideration by the program.

Negation - Inputs may be used in expressions in either their
true or complemented forms. The operator "/" sets a flag called
INVERT, which causes the column number of the next input
executed to be incremented. The column number of the com-
plemented signal is always one greater than the column number
of the corresponding true signal.

Logical "OR" - Execution of the Boolean "+" increments the
current row number, selecting the next term of the current
output.

Feedback - The use of internal feedback means that an output
signal name may appear as a factor in a term, i.e .. outputs may
sometimes be inputs depending on the context. The question of
which function an output signal name is to perform is resolved
with a flag called IN/OUT, which indicates which type of signal is
expected. IN/OUT is set by outputs, and cleared by inputs. The
Boolean "*" is used to set the flag again between consecutive
inputs.

Ouptut Inversion - PALS requires that all expressions be written
as the sum of a group of terms. For logical consistency, the
designer must indicate an inverted output by defining the
expression for the complement of the output, which he indicates
with a "/" (the inversion operator) in front of the output signal
name.

TWX: 910-338-2376
2175 Mission College Blvd. Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

Monollthlcr!l!n
Memories InJnJJ



logical Ys. Electrical Expression - The use of a negation
operator as described above results in electrical expressions
rather than logical expressions. The operator indicates that the
input must be LOW, and ignores the fact that the signal might be
assertive-HIGH or assertive-LOW. A naming convention was
developed which allows the expressions to be interpreted
logically. The convention is to begin the names of all assertive-
LOW signals with the symbol: "r. When reading expressions,
the "r is pronounced "NOT" whether it is part of the name or an
independent operator. Double negatives are not pronounced. *

The Code - The complete code for PALS may be found in
Figures 4 and 5. The compiler itself is on four FORTH screens.
The two additional screens show examples of PAL device-type
defin itions for six of the most common types. The six screens are
usually printed on a single page.

The FORTRAN program PAlASM'· (1981 version) appears on
pages 3-58 through 3-63 of the second edition of the PAL~
Programmable Array Logic Handbook. SUbsequent updates of
the source code have not been published, but are available
(subject to a charge and an agreement) from the Monolithic
Memories Inc. IdeaLogic Exchange.

A partial glossary of the PALS code follows:

MAP is the structure in which the output is generated.

PWR2 is used to make a bit mask.

ADDR converts column and row to byte and bit within the
map.

FUSE is used to toggle a bit in the map.

(INPUT) is what input signals do.

INPUT creates pins which create input signals.

NEXT-TERM is used by output signals and "+" to select a
row. and to clear its fuses.

OUTPUT creates pins which create output signals.

PAL. prints the symbolic map as in Figure 3.

PAL-TYPE is the defining word for PAL types.

* Editor's note: in this respect, MikeStolowitz's program allows a syntax convention

(dOUble negative) which Isn't supported by PALASM.

Summary
One of the objectives of the PALS compiler was that the source
data and documentation for the resultant part should be one and
the same. This insures that the documentation is always up to
date, since it must have been created first. It also eliminates the
possibility of documentation errors occurring when documen-
tation is produced after-the-fact by an independent process.

This application program is in use by people who have little or no
knowledge of FORTH. A FORTH system with the compiler has
been modified to load and run as a CP/M .COM file. The
program accepts the name of a text file, which it interprets a line
ata time.

The techniques described above have also been adapted to the
compilation of other forms of programmable logic, including
Field-Programmable Logic Arrays (FPLAs) and Field-Program-
mable Logic Sequencers (FPLSs).

Why is the PALs program so simple in FORTH? In FORTH, it is
rarely necessary to write code for the entire application. It is only
necessary to extend what already exists to include the application.

The author. Michael Stolowitz. is a digital hardware/software systems con-
sultant specialiZing is personal computer systems and peripheral devices
Since this paper was published. he has considerably extended the features of
the PALS program from what is described here: in particular, PALS can now
produce JEDEC-format files. Questions may be addressed to Mr. Stolowitz at
(415)837-3887.335 Mernlee Place. Danville, CA 94526.

FORTH Self-Study References
1. Leo Brodie, Starting FORTH, Prentice-Hall, Inc., Engle-

wood Cliffs, NJ, 1981; ISBN 0-13-842930-8 (hardcover),
0-13-842922-7 (paperback).

2. Anita Anderson and Martin Tracy, Mastering FORTH, Brady
Communications Company Inc., Bowie, MD, 1984; ISBN
0-89303-660-9.

3. Leo Brodie, Thinking FORTH, Prentice-Hall. Inc .. Engle-
wood Cliffs, NJ, 1984; ISBN 0-13-917576-8 (hardcover),
0-13-917568-7 (paperback).



III J 4 ~ • I • "lit" '4; '~''I I~ ",,, ...,, .••.•......... ............... •.v •.~ ••v •••

• l1
2

"",
19• J ••...••1.. ..•

2 ".--•..
• r-J•10

11 11
t2
13

"15

3
•.. ....

"
~

11

" "" 17" J U1~"21
22
23

•.. ~• •.. ~
24 n.."24 '" 16

"

~

••...""""L....i•..~ ~
•.. ..•

J2

~",. 15"

~

V"""".. ~
&

~ ...
•• IJ."42 '" I•.,

J

~

•••••••••••41

•.. ..•
I •.. ..•

•• J••50 ~ ~" 13

" •..•..
" ~54
51

I ••. ~=----I..
51 -->-J"51
51 t2
50

"""
I ~

~-•.. ..•

Monolithlo W Memories



\ PROJECT
\ FUNCTION
\ BY
\ FILE
\ DISK
\ REVISION

1. PHI
2. PlU
3. ISET-TWO
4. CDSB
5. WAIT
6. IAS
7. lMAS
8. IUDS
9. ILDS
10. GND

I IWAIT

I ILATCH-DATA

FORML 1982
EXAl'lPLE PAL
MICHAEL STOLOWITZ
EXAMPLE.TXT
FORML
10/04/82

I CDSB
IMAS
IUDS

I SYNC

11. IOE
12. A0
13. SYNC-INH
14. I LATCH-DATA
15. STB-ENA
16. IT\'lO-CYC
17. IWAI'r
18. SYNC
19. I DTACK-INH
20. VCC

* ILDS
* I SYNC-INH

HI TRI-S'TATE ENABLE
IAS

I SYNC-INH
I IT\'lO-CYC

SYNC
+ I I TWO-CYC

I SYNC *
+ I SYNC *

WAIT

* I SYNC

* I STB-ENA * I PHI

* I ISET-T~'lO * I IAS
* S'rB-ENA * I IAS

I STB-ENA
IWAI'r

I ITWO-CYC *
+ I !-LATCH-DATA *

IWAIT *
liAS

HI ('rRI-STATE ENABLE
IUDS * ILDS
I SET-TWO
I TWO-CYC

+
+ I
+ I

I A0
+
+

PAL.

HI (TRI-STATE ENABLE )
I SYNC-INH * I IUDS *

SYNC * I IUDS *
I LATCH-DATA
I LATCH-DATA



A Compiler for Programmable Logic in FORTH

'"1 x--- x---
2 -x--
3 ---x
4 xxxx xxxx xxxx xxxx xxxx xxxx xxx x xxxx
5 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
6 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxXX
7 xxxx xxxx xxxx xxxx xxxx xxxx XXXX XXXX
8 -x--
9 x---

10 x--- x---
11 -x-- ---x ---x
12 xxxx XXXX xxxx xxxx xxxx xxxx xxxx xxx X
13 xxxx xxxx xxxx XXXX XXXX xxxx xxxx xxxx
14 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
15 xxxx xxxx xxxx xxxx xxxx xxx x xxxx xxxx
16 x---
17 XXXX xxxx xxxx xxxx XXXX xxxx xxxx xxxx
18 XXX X xxxx xxxx xxxx xxxx xxxx xxxx xxxx
19 XXXX XXXX xxxx xxx x xxxx xxxx xxxx XXXX
20 XXXX Xxxx xxxx xxxx xxx x xxxx xxxx XXXX
21 XXXX xxx x xxxx xxxx xxxx xxxx xxx x xxxx
22 XXXX XXXX xxxx xxxx xxxx xxxx xxxx XXXX
23 xxxx xxxx xxxx xxxx xxxx xxxx xxx x xxxx
24 -xx- -x--
25 ---x -xx-
26 xxxx XXXX xxxx xxxx xxxx xxxx xxxx XXXX
27 XXXX XXXX xxxx xxxx xxxx xxxx xxxx XXXX
28 xxxx xxxx xxxx xxxx xxxx xxxx xxx x xxx x
29 XXXX XXXX xxxx xxxx xxxx xxxx xxxx XXXX
30 XXXX xxxx xxxx xxxx xxxx xxxx xxxx xxxx
31 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
32 ---x ---x
33 ---x --x-
34 XXXX XXXX xxxx xxxx xxxx xxxx xxx x xxxx
35 XXXX xxxx xxxx xxxx xxxx xxxx xxxx XXXX
36 XXXX XXXX xxxx xxxx xxxx xxxx xxxx XXXX
37 XXXX xxxx xxxx xxxx xxxx xxxx xxxx XXXX
38 xxxx XXXX xxxx xxxx xxxx xxxx xxxx xxxx
39 XXXX XXXX XXXX xxxx xxxx xxxx xxxx xxxx
40 --x- ---x -x--
41 -x-- ---x
42 XXXX xxx x xxxx xxxx xxxx xxxx xxxx XXXX
43 xxxx XXXX xx XX xxxx xxxx xxxx xxxx xxxx
44 XXXX XXXX xxxx xxxx XXXX xxxx xxxx XXXX
45 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
46 XXXX XXXX xxx x xxxx xxxx xxxx xxxx XXXX
47 xxxx XXXX xxx x xxxx xxxx XXXX xxxx XXXX

Figure 3. Fuse Map for PAL 16R4 Application

9·58 Monollthlo W Memories



SCR
13
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

SCR
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

*99 (63H)
\ fuse addr pwr _ ..,at) .Ln/out invert last-out row h/l
CREATE MAP 512 ALLOT
VARIABLE IN/OUT
VARIABLE LAST-OUT
VARIABLE ROW

VARIABLE INVER'r
VAiUABLE H/L

ADDR ( col -- addr bit) ( addr = rS r2 rl r0 c4 c3 c2 cl c0 )
ROW @ 8 /MOD SWAP 32 * ROT + SWAP (bit = r4 r3 )
4 /MOD 256 * ROT + t-1AP+ S\'lAP P~JR2;

FUSE (S col
INVERT @ +

)
o INVERT

#l0'1l (64H)
\ (input) input next-term

(INPUT) (S 'col --
@ FUSE 0 IN/OUT

INPUT (S col
CREA'rE

(S
@ CREATE

IN/OUT @ 0=

) (pin's dot name
DOES>
) (pin's signal name
OOES>

ABORT" Output Requiredl"

NEXT-'rERM (S
LAST-OUT @
-lOVER +1
32 0 DO I

-- )
DUP @ 0=

2+ DUP
FUSE LOOP

ABORT" No More Terms 1"
@ ROW 1 1 SWAP + 1

1 12-1/ OUT 1 ;

seR #101 (65H)
o \ output twk pal. 15Sep82mcs
1 OUTPUT (S row #rows col pin's dot name
2 CREATE", DOES>
3 (S pin's signal name
4 CREATE, DOES>
5 @ IN/OUT @ iF (input expected )
6 DUP @ 31 > ABORT" L'loInternal Feedbackl" (INPUT)
7 ELSE ( output expected )
8 INVER'r@ H/L @ + 1 - }I.BORT"Invert Output Equationl"
9 2+ uAST-OUT! 0 Il'lVERT1 NEXT-TERM THEN;

10 TWK ( col -- ) ROW @ SWAP ADDR OVER C@ OR SWAP CI ;
11 PAL. CR 64 0 DO I ROW 1 I 3 .R 2 SPACES
12 32 0 DO I 3 fu~D 0= IF SPACE THEN
13 I ADDR SI'lAPC@ fu"lD IF." -" ELSE ." X" 'rrlEN LOOP
14 CR I 8 MOD 7 = IF CR THEN ?KEY IF LEAVE THEN LOOP
15



SCR #102 (66H)
o \ pal-type pal pals + I * = HI NC 30Sep82mcs
1 PAL-TYPE (8 +scr hll )
2 CREATE" DOES> 2@ HI L [BLK @ ] LITERAL + LOAD
3 MAP 512 ERASE 0 INVERT
4 SKIP ( -- ) BL WORD DROP
5 VOCABU~ARY PAL IMMEDIATE PAL DEFINITIONS
6 l~C ( S ) BL \vORD DROP i
7 + (S) NEXT-TERM i
8 I (S) 1 INVERT I ;
9 * (S) INloUT @ ABORT" Input Expected I" 1 INloUT

10 III (S ) QJ INI OUT 1 i
11 (S)
12 1 0 PAL-TYPE 10L8 1 1 PAL-TYPE 1088 2 0 PAL-TYPE 16R4
13 2 0 PAL-TYPE 16R6 2 0 PAL-TYPE 16R8 2 0 PAL-TYPE 16L8
14 FORTH DEFINITIONS
15 : PALS (S -- ) [COMPILE] PAL DEFINITIONS;

SCR
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#103 (67H)
\ 10L8 10H8 30Sep82mcs

2 INPU'f 1. 0 INPUT 2. 4 INPUT 3. 8 INPUT 4.
12 INPUT 5. 16 INPUT 6. 20 INPUT 7. -24 INPUT 8.
28 INPUT 9. 113. SKIP ; 30 INPUT 11. 20. SKIP ;
56 2 BL OUTPUT 12. 48 2 BL OUTPU'f 13 .
40 2 BL OUTPUT 14. 32 2 BL OUTPUT 15.
24 2 BL OUTPU'f 16. 16 2 BL OUTPUT 17.

8 2 BL OUTPUT 18. 0 2 Bf..,OUTPUT 19.
TWEEK (S -- )

FORTH 8 000 2 0DOJ8* I + ROW !
6 TWK 7 TWK 11 TWK 14 'fWK 15 TlvK 18 TivK
19 TlvK 22 TWK 23 TWK 26 TivK 27 TWK LOOP LOOP PAL

SCR
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#104 (68B)
\ 16R4 16R6 16R8 16L8

: 1. SKIP
12 INPUT 5.
28 INPUT 9.

o INPUT 2.
16 INPUT 6.

10. SKIP i

4 INPUT 3.
20 INPUT 7.
: 11. SKIP i

8 INPUT 4.
24 INPUT 8.

20. SKIP

56 8 30 OUTPUT 12.
40 8 22 OUTPUT 14.
24 8 14 OUTPUT 16.

8 8 6 OUTPUT 18.

: TWEEK (S -- ) ;

48 8 26 OUTPUT
32 2 18 OUTPUT
16 8 10 OUTPUT

o 8 2 OUTPUT

13.
15.
17.
19.

Monolithic W Memories



High-Speed Bipolar PROMs Find New
Applications As Programmable Logic Elements*

Classic applications for bipolar PROMs include instruction
storage for (Tlicroprogram control store and software for micro-
processor programs. However, due to a new design methodology
and state-of-the-art performance, PROMs are finding increasing

numbers of applications as Programmable Logic Element
(or PLE) devices. This paper will cover the architecture, applica-
tions, and software support for PLE devices.

* This paper IS a slightly modlfled verSion of the paper by the same name which appeared In the Conference Proceedings of the 9th West Coast Computer Falre.
pages 40-4 7 ~Apn I 1984

Monolithicf:T!n
Memories InJtW

9·61



Elements
Classic applications for bipolar PROMs include instruction
storage for microprogram control store and software for micro-
processor programs. However, due to a new design meth-
odology and state-of-the-art performance, PROMs are finding
increasing numbers of applications as Programmable Logic
Element (or PLE) devices. This paper will cover thearchitecture,
applications, and software support for PLE devices.

Fuse-Programmable Logic Families
A typical combinatorial Boolean equation can be written in
sum-of-product form, which consists of several AND gates
summed at an OR gate. In general, a set of combinatorial
Boolean equations with n inputs (10, 11, ... ,In-1) and m outputs
(00,01, ... , Om-1) can be generated through one level of
AND gates followed by one level of OR gates. Custom logic
functions can be defined using programmable logic.

N ~ p/. rc>R"l M, .
INPUTS-r-~~OUTPUTS

Fuse-programmable devices normally consist of two levels of
logic - AND-array and OR-array - as suggested above. There
are three basic types of fuse-programmable devices - PROM
(Programmable Read Only Memory), PLA (Programmable Logic
Array), and PAL® (programmable Array Logic) devices. Which
arrays are fuse-programmable distingUish these three types of
devices.

PLAs offer the greatest flexibility since both the AND and OR
arrays are programmable. This flexibility comes with the cost of
lower performance, higher power dissipation, and generally
higher price.

A PAL device has only the AND-array programmable; the OR-
array is fixed. Each output has an OR gate associated with it
which sums a fixed number of product terms (AND combina-
tions). Statistically there is only a limited numberof product terms
in any equation. So the flexibility of a PLA is normally not
needed. This is a compromise between flexibility and cost and
performance.

The OR-array is programmable in a PROM, but the fixed AND-
array consists of all combinations of literals for each of the input
variables. For example, there are 32 product terms available in a
PROM with 5 inputs a,b,c,d,e (corresponding to words Othrough
31 in the PROM memory):

/a'/b'/c'/d'/e (Word 0)
/a'/b'/c'/d' e (Word 1)
/a'/b'/c' d'/e (Word 2)

a' b' c'/d' e
a' b' c· d'/e
a' b' c' d' e

(Word 29)
(Word 30)
(Word 31)

where ,., represents the Boolean AND operator and 'f' repres-
ents the Boolean NOT or inverter operator. The fuses in the
OR-array are programmed to select the desired AND
combinations.

PROGRAMMABLE
LOGIC ELEMENT

PROGRAMMABLE
LOGIC ARRAY

PROGRAMMABLE
ARRAY LOGIC

@LE

PLA

PAL

FIXED AND ARRAY
PROGRAMMABLE OR ARRAY

BOTH ARRAYS
PROGRAMMABLE

PROGRAMMABLE AND ARRAY
FIXED OR ARRAY

Figure 2. Structural Difference Between PLE (PROM), PLA
and PAL Devices. Note that the PAL and PLE Logic
Circuits Complement Each Other. The PAL Device
has Many Input Terms While the PLE Device is Rich
in Product Terms

The existence of all combinations of literals for all inputs makes it
possible to define functions which cannot be implemented in a
PLA or a PAL device. For example, a 5-input Exclusive-OR
(XOR) function can be implemented using sixteen product
terms. This may exceed the number of product terms available in
a PAL device and will consume too many product terms in a
PLA, but can be constructed quite efficiently in a PROM. It is
important to realize that any combination of inputs can be
decoded in a PROM as long as sufficient input pinsare provided
since a PROM provides 2n product terms (where n is the number
of inputs). Anotherway of looking at this is that PROMs store the
logic transfer function in a memory. The fixed AND-array (or
AND-plane) consists fo the row and column decoders while the
fuses in the OR-array (or OR-plane) are the bits in the memory.
In a memory, a fuse blown versus a fuse intact distingUishes a
HIGH from a LOW

FIXED AND
PLANE

SIZE: n x 2"

PROGRAMMABLE
OR PLANE

SIZE: 2" x m

Figure 3. Block Diagram of a PROM Viewed as PLE Device.
Notice that the PLE Provides Many (2n, Where n is
the Number of Inputs) Product Terms. A By-Product
01 this is Programmable Output Polarity: Either
Active-High or Active-Low Output Polarities are
Available



High-Speed Bipolar PROMs Find New Applications as PLE Devices

Due to this special characteristic of abundant product terms,
PROMs are also often used as logic devices. In this paper,
PROMs are referred to as PLE (Programmable Logic Element)
devices.

Advantages of PLE Devices
PLE devices provide a cost-effective solution for many applica-
tions. Here are just some of the advantages of PLE devices:

1) Customizable Logic - The designeer is limited to standard
functions if SSI/MSI devices are used. The designer can create
his own logic chips using PLE devices.

2) Design Flexibility - Modification of design is possible even
without redesigning the PC board. For example, the address
space of a microprocessor-based system can be reconfigured
by merely programming a new device if the decoding is
implemented in a PLE device. This feature comes in handy if you
want to upgrade a system which oriqinally used 64-K Dynamic
RAMs to now use state-of-the-art 256-K Dynamic RAMs.

3) Reduce Errors - Errors are sometimes unavoidable and
oftentimes quite expensive. Programmable devices make it
easier and less expensive to correct errors.

4) Reduction of Printed Circuit Board Space-PLE devices save
PC board space since several SSI/MSI functions can be
integrated into a single package.

5) Fast Turnaround Time - With existing commercial pro-
g rammers and development software support, a prototype of the
custom tailored PLE device will be ready in just a few minutes.

A Great. Performer!

g}
C£;--:.. // ;,-- -. \ ",/

O' I,. ,1/ ,// \'/ ,1/.\/' ;6 <:>

c~ Ic~O~060~~

PLE Applications
PLE applications include random logic replacement, decoderl
encoders, code converters, custom ALUs, error detection and
correction, look-up tables (both trigonometric and arithmetic),
data scaling. compression arithmetic like Wallace Tree adders,
distributed arithmetic, and residue arithmetic.

Several levels of random logic chips can be replaced by one PLE
logic circuit. As discussed earlier, PLE devices can implement
logic in sum of products form.

Despite the existence of dedicated encoders and decoders,
many of these functions are application dependent. A standard
3-to-8 decoder/demultiplexer (74S138) can be used in decoding
applications. But the decoding scheme may require several
3-to-8 decoderl demultiplexers and additional SSI OR-gates. On
the other hand. a PLE device can be customized to perform the
required decoding function with no additional gates. Simple
decoders. such as those used for decoding memory chip selects
from address lines. can be implemented in a PLE device with five
to ten inputs. More complex decoding may require eight to
twelve inputs.

Figure 4. PLE Address Decoding Application. The PLE Device
Selects One of Eight 2Kx8 Stalic RAMs by Decoding
Several Microprocessor Address Lines

PLE devices also offer a very flexible solution for code converSion
applications. Translations of codes such as from ASCII to
EBCIDIC, Binary to BCD (Binary Coded Decimal). or BCD to
Gray code can be implemented in PLEs. The 74S184 Binary-to-
BCD Converter is actually a 32x8 PROM.

AO 01
A1 02

An-1 On

AO 01
A1 02
A2 03
A3 04
A4 05
AS 06
A6 07
A7 OB
AB
A9

1:4 CODE I
SELECT \

Figure 5. Two Examples of PLE Code Converters. The Second
Example Illustrates How to Use Two Inputs as Code
Select Lines so that Four Converters can be Provided
in One PLE Device



High.Speed Bipol~r PROMs Find New Applications as PLE Devices

Standard ALUs (such as the 74S181) may not provide a very
specailized function which a particular system requires, such as
BCD arithmetic. In this case a PLE device is again a good alter-
native. Although the PLE device may be slower than a dedicated
ALU, the presence of this specialized function is critical. For
example, a 4-bit ALU can be constructed in a PLE device with
twelve inputs (A3-AO, 83-BO, 12-10,Cin) and eight outputs (F3-
FO,/G,/P, Cout, A = B). Any eight functions can be implemented.

G
P
COUT

A=B

Figure 6. Block Diagram for a 4-Blt ALU which can be Imple-
mented In a PLE Device

Data scaling is another PLE device application. A dedicated
multiplier is not required if the scaling factor is a constant; the
prescaled result can be stored in a PLE device. Fixed-bit multi-
pliers are typically implemented in PLE devices.

Column compression technique (also called Wallace Tree
Compression) is used when expanding an array of several
smaller parallel multipliers to perform large word length mUltipli-
cation. These smaller multipliers will generate partial products
(intermediate results) which must be numerically summed
according to bit significance in orderto calculate the final word-
length multiplication. Many levels of 2-input bus adders can be
used to add these partial products, but the carry propagation
delays may be too long. However, partial product adders imple-
mented in PLE devices can do compression of many levels
without passing carries. Thus, the summmation will be much
faster.

" ... THE 'S556, TOGETHER WITH PLE:f ORGANIZED IN A
WALLACE-TREE CONFIGURATION, CAN SAIL RIGHT ALONG AT THE

RATE OF FOUR 56 X 56 MULTIPLICATIONS EVER'!
MICROSECOND ... "

Group Code Recorder (GCR) is an encoding/decoding scheme
used for error detection on tape. During a WRITE operation,
each 8-bit word is divided into two 4-bit nibbles. Both nibbles are
then encoded into 5-bit codes before being recorded onto tape.
Both 5-bit codes are decoded back to the original4-bit nibbles
and then combined during a READ operation. PLE circuits are
exceptionally useful in mapping the 4-bit data to the 5-bit code
and back.

Exclusive-OR gates, being half adders, are very prevalent in
Error Detection and Correction (EDC) schemes. Many SSI chips
are required to implement this function while PLA and PAL
devices may not provide sufficient product terms. PLE devices
are again an ideal solution.

AO~~~ [>-F
A3

AO,A1

A'J,A3 00 01 11 10

0000 0

010 00 0

110000

100 0 0 0

AoA, A2 AJ + ADA1 A2AJ

+ ADA, A2AJ + ADA, A2A3

+ AOA1 A2AJ + AoA1 A2A3

1""'-:
1----' .

L:.. IL~ L:.. IL~
F

FUSEBLOWN

FUSEINTACT

Ao
UNPROGRAMMEDOUTPUT

ALWAYSHIGH

Figure a. Exclusive-OR Gates can be Implemented in PLE
Very Efficiently. A 4-lnput XOR Gate (a) Maps into a
Checkerboard Pattern in a Karnaugh Map (b) and
Requires Eight Product Terms (c). The PLE Imple-
mentation is Shown in (d). An a-input XOR Gate
Requires Sixteen Product Terms



High-Speed Bipolar PROMs Find New Applications as PLE Devices

In many applications, the speed of the converging series used to
generate the trigonometric functions is too slow and the
accuracy obtained by direct table look-up requires too much
hardware, A good compromise between speed and hardware is
to store an approximation to the function in a PLE device. Then
use this approximation as a starting point for an iterative
algorithm (such as Newton-Raphson) to obtain additional
accuracy High-Speed division, multiplication, and square-root
calculations can be performed in a similar manner.

Figure 9. RLE Look-Up Tables and Iteration Loops can be
Used to Generate Very Accurate Trigonometric and
Arithmetic Functions. An Approximation to the Func-
tion is Stored and Additional Accuracy is Gained
Using Iteration Operations

Distributed arithmetic is used for performing convolution oper-
ations without using multiplier/accumulators. If the coefficients
are constant. a look-up table for convolution can be stored in a
PLE device. thus replacing the multiplier.

Residue arithmetic (also called Carry-Independant arithmetic)
is a techniqfJe used to perform very fast integer arithmetic. High
speed IS achieved by using numbers in residue representation
so that the sequential delay of carries on digits of higher
significance is eliminated. A Residue Numbering System (RNS)
is determined using an optimum moduli when designing the
system. Conversion to and from residue representation are
basic mapping functions which can be conveniently done in a
PLE device. Also. since operations in residue arithmetic are
performed using modulo addition and multiplication without
carries. these operations can also be done using PLE devices. In
general, residue arithmetic should only be used for integer
arithmetic which requires intensive operations.

Figure 10. Architecture of a System Based on RNS. An Integer
Number is Converted to RNS Representation Using
PLE Devices, Then the RNS Arithmetic is Performed
Using Some Other PLE Devices, and Finally the
RNS Result is Converted Back to Integer Repre-
sentation Again Using PLE Devices

The basic restrictions for using PLE devices to replace SSIIMSI
parts are:

1) Since a memory element has a product term for every com-
bination of literals of all the input terms, static hazard is normally
unavoidable, Forexample, there are 5 inputs available in a 32x 8
PROM. In order to generate a function like:

f = a' b' c' d

The actual implementation inside the PROM will be:

f = a' b' c' d'/e + a' b' c' d' e

If a = b = c = d = HIGH,accordingtothefirstequation,weshali
expect f to remain HIGH independent of e changing. In the
actual PROM implementaton, there will be no hazard if e stays
either HIGH or LOW. But if e changes, depending on whether e
or /e will occur first, there exists the possibility that both product
terms in the second equation will be LOW momentarily, which
may cause a static logic hazard (HIGH to LOW to HIGH) for f.
This hazard is commonly called a "glitch". Static hazards are not
a problem for many applications, like those offered In thiS paper.
but extreme care must be taken if the output of a PLE device is
used to strobe another device.



ADDRESS e d c b a f------------------------------
00 0 0 0 0 0 0
01 0 0 0 0 1 0
02 0 0 0 1 0 0

OC 0 1 1 0 0 0
00 0 1 1 0 1 0
OE 0 1 1 1 0 0or 0 1 1 1 1 1
10 1 0 0 0 0 0
11 1 0 0 0 1 0
12 1 0 0 1 0 0

10 1 1 1 0 1 0
l.E 1 1 1 1 0 0
17 1 1 1 1 1 1------------------------------

Figure 11. This Truth Table Graphically Illustrates the Possible
Glitch (HIGH to LOW to HIGH Hazard) for the
Function f = a* b* c* d Implemented in a 32x8 PROM.
Address OF and 1F Contain a 1 while All Other
Locations Contain a 0 for Output f.1f Address Input e
Should Change, the PROM Decoders Could Mo-
mentarily Selct a Location Containing a 0

2} Although PROMs are available with registered outputs,
internal feedback from the outputs and buried registers are not
yet available in PROMs. External connections from some
outputs to inputs must be made for applications which require
feedback (such as in state machines). However, Registered
PROMs without feedback are useful for pipelining (overlap
instruction fetch and execution) in order to increase system
throughput.

"'L~A::tM ::tORware ~Upport
Monolithic Memories has developed a software tool to assist in
designing and programming PROMs as PLE devices. This
package, called "PLEASM" (PLE Assembler). is available for
several computers including the VAXNMS and IBM PC/DOS
PLEASM converts design equations (Boolean and arithmetic)
into truth tables and formats compatible with PROM program-
mers. A simulator is also provided to test a design using a
Function Table before actually programming the PLE device.
The PLEASM operators are listed below and the PLEASM
catalog of operations is given on the next page. A sample PLE
Design Specification (source code for PLEASM software) with
PLEASM outputs is given in Figure 12. PLEASM software may
be requested through the Monolithic Memories IdeaLogic
Exchange.

Operators (in hierarchy of evaluation)

Comment follows
Dot operator (pin list or arithmetic operator follows)

ADD Address pins (Inputs)
OAT Data pins (Outputs)

Delimiter, separates binary bits (MSB first)
Equality (combinatorial)

Complement, prefix to a pin name
AND (product)

+ OR (sum)
: +: XOR (exclusive or)

XNOR (exclusive nor)

. •. Multiply (numeric multiplication)

. +. Plus (numeric addition)

Monolithic Memories PLEASM version 1.20 @ copyright 1984
Monolithic Memories

PLEASM - PLE Assembler - provides the following options:

C Catalog - Prints the PLEASM catalog of operations
E Echo Input - Prints the PLE design specifications
T Truth Table - Prints the entire truth table
B Brief Table - Prints only used addresses in the truth

table

H Hex Table - Prints the truth table in HEX form

- Exercises the function table in the
logic equations

- Generates INTEL HEX programming
format

- Generates ASCII HEX programming
format



PLESP8
PSOOO
BASIC GATES
MMI SANTA CLARA, CALIFORNIA
.AOO 10 Il 12 I) 14
.OAT 01 02 OJ 04 05 06 07 OB

01 • 10

02· /10

03 • IO 11 12 13 14

O •• 10 + II + 12 + 13 + 14

05 • /10 + /II +/12 + /IJ + 1I4

06 • /10 /11 ./12 /13 /14

07 • [0 :;+: II 12 13 14

08 • 10 :"': 11 .. 12 :"': 13 . . 14

LLLLL
HHHHH
HLHLH
LHLHL

ALL ZEROS
ALL ONES
000 CHECKERBOARD
EVEN CHECKERBOARD---- -----~----- ------ --- ---- ----- ---- ------ -------- ---- ----- - - -------

DESCRIPTION

THiS EXAMPLE ILLUSTRATES THE USE OF PLEs TO IMPLEMENT THE BASIC GATES;
BUFFER, INVERTER, AND GATE, OR GATE, NAND GATE, NOR GATE, EXCLUSIVE OR
GATE, AND EXCLUSIVE NOR GATE.

NOTE ALSO THAT THREE-STATE OUTPUTS ARE PROVIDED WITH ONE ACTIVE LOW
OUTPUT ENABLE CONTROL VEl.

PLEASM GENERATES THE PROM TRUTH TABLE FROM THE LOGIC EQUATIONS AND
SIMULATES THE FUNCTION TABLE IN THE LOGIC EQUATIONS.

Figure 12a. PLE Design Specification. This Is the Source Code
for PLEASM Software. PLEASM Software Gen-
erates the Truth Table and Programming Formats
from the Equations. PLEASM Software Also
Exercises the Function Table in the Equation and
Reports Errors

BASIC GATES

.ADD 10 11 12 I3 14

.OAT 01 02 03 04 05 06 07 08

ADD AO A1 A2 A3 ,\4 01 02 03 04 05 06 07 08

-- - -- - -- ---- - - ----- - - -- - - ---- ------ - - -- - - - --- --
0 L L L L L L H L L H H L
1 H L L L L H L L H H L H
2 L H L L L L H L H H L H
) H H L L L H L L H H L L• L L H L L L H L H H L H
S H L H L L H L L H H L L
6 L H H L L L H L H H L L
7 H H H L L H L L H H L H
8 L L L H L L H L H H L H• H L L H L H L L H H L L

10 L H L H L L H L H H L L
11 H H L H L H L L H H L H
12 L L H H L L H L H H L L
13 H L H H L H L L H H L H
14 L H H H L L H L H H L H
IS H H H H L H L L H H L L
16 L L L L H L H L H H L H
17 H L L L H H L L H H L L
18 L H L L H L H L H H L L
I' H H L L H H L L H H L H
20 L L H L H L H L H H L L
21 H L H L H H L L H H L H
22 L H H L H L H L H H L H
23 H H H L H H L L H H L L
2. L L L H H L H L H H L L
2S H L L H H H L L H H L H
26 L H L H H L H L H H L H
27 H H L H H H L L H H L L
28 L L H H H L H L H H L H
2. H L H H H H L L H H L L
)0 L H H H H L H L H H L L
31 H H H H H H L H H L L H

-- - - - --- -- - --- -- - -- -- -- --- ---- -- ------ - - -- -- - --
HEX CHECK SUM. OOF)C

Figure 12b. Truth Table. PLEASM Software Generates This
Truth Table which can be Used for Verifying Your
Design

BASIC GATES

.ADO 10 Il 12 IJ I4

.DAT 01 02 oJ 04 as 06 07 08

Figure 12c. Hex Table. PLEASM Software Generates This
Truth Table in Hexadecimal Form for Verification
of Locations In the PLE

Figure 12d. ASCII Hex Programming Format. PLEASM Soft-
ware Generates this ASCII Hex Programming
Format with Hex Check Sum. Control Characters
are Included so that the Information can be Down-
Loaded Directly to a PROM Programmer

: l000000032D'DAl9DAl91AD9DAl91AD91AD9DAl9' 0
: lOOOlOOODAl91AD91AD9DAl91AD9DAl9DAl91ACD54
: OOOOOOOlPF

Figure 12e. Intel Hex Programming Format. PLEASM Soft-
ware Generates this Intel Hex Programming
Format with a Hex Check Sum Following Every
16 Bytes of Data



High-Speed Bipolar PROMs Find New Applications as PLE Devices

PLE Family
Monolithic Memories carries a family of fast PROMs which can
be used as Memory or PLE devices. Since the critical parameter
for logic applications is speed, our series of fast PROMs have

worst-case memory access times (or propagation delays) rang-
ing from 15 ns for small PROMs to 40 ns for large PROMs. The
Logic Symbols for four of the PLE devices are given in Figure 13
and a summary of the PLE family is given below

PART INPUTS OUTPUTS PRODUCT OUTPUT tpD (ns)
NUMBER TERMS REGISTERS MAX-

PLE5P8 5 8 32 25

PLE5P8A 5 8 32 15

PLE8P4 8 4 256 30

PLE8P8 8 8 256 28

PLE9P4 9 4 512 35

PLE9P8 9 8 512 30

PLE10P4 10 4 1024 35

PLE10P8 10 8 1024 35t

PLE11P4 11 4 2048 35

PLE11P8 11 8 2048 35

PLE12P4 12 4 4096 35

PLE12P8 12 8 4096 40

PLE9R8 9 8 512 8 15

PLE10R8 10 8 1024 8 15

PLE11RA8 11 8 2048 8 15

PLE11RS8 11 8 2048 8 15

*CloCk to output time for registered outputs

t Preliminary data.

NOTE: Commercial limits specified.

Acknowledgements
Several of the designs discussed in this paper were proposed by
our good friend and colleague Ulrik Mueller, who is now study-
ing Computer Science in his native country, Denmark, and our
Monolithic Memories Pal zahir Ebrahim. Special thanks also go
to Ranjit Padmanabhan for writing the PLEASM simulator.

There are many interesting applications for high-speed PROMs
used as PLE devices. A software package called "PLEASM"
software is available as a development tool.

1. "PAL Programmable Array Logic Handbook", 3rd edition,
J. Birkner, V. Coli, Monolithic Memories, Inc.

2. "Systems Design Handbook", Monolithic Memories, Inc.

3. "Bipolar LSI1984 Databook", 5th edition, Monolithic Memo-
ries, Inc.

4. "PROMs and PLEs: An Application Perspective", Z. Ebrahim,
Monolithic Memories Application Note AN-126.

5. "An Introduction to Arithmetic for Digital Designers",
S. Waser, M.J. Flynn, Holt, Rinehart & Winston, N.Y., 1982.



ABELTM, A Complete Design Tool
FOil Programmable Logic
Michael Holley
DATA lieD
10525 Willows Rd. N.E.
Redmond. WA 98073-9746

As the use of PAL® and PLE devices (PROMs) increases, the
need for high-level design tools becomes necessary. Designers
need eas'er, faster, and more efficient ways to design with such
programmable devices. With the more complex devices currently
being introduced to the market, this need is even greater.
Additionally, a designer should be able to specify logic designs
in a way that makes sense in engineering terms; he orshe should
not have to learn a new way of thinking about designs.

ABEL'·, a complete logic design tool for PAL devices, PLE
devices ~nd FPLA devices meets these requirements. ABEL'·
incorporrtes a high-level design language and a set of software
programs that process logic designs to give correct and efficient
designs.

The ABELTM design language offers structures familiar to
designers: state diagrams, truth tables, and Boolean
equations. The designer can choose any of these structures
or combine them to describe a design. Macros and
directives are also available to simplify complex designs.

The ABEL'M software programs process designs described
with the high-level language. Processing includes syntax
checking, automatic logic reduction, automatic design
simulation, verification that a given design can be
implemented in a chosen device, and automatic generation
of design documentation.

To use ABELTM, the designer uses an editor to create a
source file containing an ABELTM design description. He
then processes the source file with the ABELTM software
programs to produce a programmer load file. The
programmer load file is used by logic and PLE programmers
to program devices. Several programmer load file formats
are supported by ABELTM so that different programmers may
be used.

The source file created by the designer must contain test
vectors if simulation is to be performed. Test vectors
describe the desired (expected) input-to-output function of
the design in a truth table format. The ABELTM simulator
applies the inputs contained in the test vectors to the design
and checks the obtained outputs against the expected
outputs in the vectors. If the outputs obtained during
simulation do not match those specified in the test vectors,
an error is reported.

Following are two designs described in the ABEL'· design
language. These designs would be processed to verify their
correctness and to reduce the number of terms required to
implement them. The first design is for a PAL device, the second
for a PLE logic circuit.
ABEL'" is a trademark of DATA I/O

6809 MEMORY ADDRESS DECODER
Address decoding is a typical application of programmable
logic devices, and the following describes the ABELTM
implementation of such a design.

Design Specification

Figure 1 shows a block diagram for the design and a
continuous block of memory divided into sections
containing dynamic RAM (DRAM), 1/0 (/0), and two sections
of ROM (ROM1 and ROM2). The purpose of this decoder is
to monitor the six high-order bits (A 15-A 10) of a sixteen-bit
address bus and select the correct section of memory based
on the value of these address bits. To perform this function,
a simple decoder with six inputs and four outputs is
designed with a 14L4 PAL device.

Table 1 shows the address ranges associated with each
section of memory. These address ranges can also be seen
in figure 1.

ROM2

10

Design Method

Figure 2 shows a simplified block diagram for the address
decoder. The address decoder is implemented with simple

TWX: 910-338-2376
2175 Mission College Blvd_ Santa Clara, CA 95054-1592 Tel: (408) 970-9700 TWX: 910-338-2374

Monolilh/crlmn
Memories uun.u

9-69



:;1"'~""GaIlOn IS<fc""!!"~a'by !1roGlJrng-m~a~ar~s Dlis Imo-
a set named Address. The lower-order ten address bits that
are not used for the address decode are given "don't care"
values in the address set. In this way, the designer indicates
that the address in the overall design (that beyond the
decoder) contains sixteen bits, but that bits 0-9do not affect
the decode of that address. This is opposed to simply
defining the set as, Address = [A 15,A 14,A 13,A 12,A 11,A 101,
which ignores the existence of the lower-order bits.
Specifying all 16 address lines as members of the address
set also allows full 16-bit comparisons of the address value
against the ranges shown in table 1.

Test Vectors

In this design, the test vectors are a straightforward listing
of the values that must appear on the output lines for
specific address values. The address values are specified
in hexadecimal notation on the left side of the ".> ""
symbol. Input to a design always appear on the left side

DRAM
110
ROM2
ROM1

OOOO-DFFF
EOOO-E7FF
FOOO-F7FF
F800-FFFF

of the test vectors. The expected outputs are specified to
the right of the ". >" symbol. The designer chose in this case
to use the symbols Hand L instead of the binary values 1
and 0 to describe the outputs. The correspondence between
the symbols and the binary values was defined in the
constant declaration section of the source file, just above
the section labeled equations.

module m6809a
title '6809 memory decode
Jean Designer Data I/O Corp Redmond WA

U09 device 'P14L4';
A15,A14,A13,A12,All,A10 pin 1,2,3,4,5,6;
RoMl,Io,ROM2,DRAM pin 14,15,16,17;

1,0, • X. ;
[A15, A14, A13, A12, All, AI0, X, X, X, X, X, X, X, X, X, XJ;

(Address (= ""hDFFF) ;

(Addt'ess }= ""hEOOO) & (Addt'ess (= ·..··hE7FF);

(Addt'ess }= ''''hFOOO}& (Addt'ess (= AhF7FF) ;

(Address }= ···hF8(0);

test vectors (Address -}
·..·hOOOO -}
""h4000 -}
·····h8000-}
"'hCOOO -}
"hEOOO -}
"'hE800 -}
~'hFOOO -}
""hF800 -}

[RoMl,RoM2,IO,DRAMJ)
[ H, H, H, L J;
[ H, H, H, L J;
[ H, H, H, L];
[ H, H, H, L J;
[ H, H, L, H J;
[ H, H, H, H J;
[ H, L, H, H J;
[ L, H, H, H J;



Seven-Segment Display Decoder
This display decoder decodes a four-bit binary number to
display the decimal equivalent on a seven-segment LED
display. The design incorporates the ABEL'· truth table
format and is implemented on a RA5P8 PLE.

Design Specification

Figure 4 shows a block diagram for the decoder design and
a drawing of the display with each of the seven segments
labeled to correspond to the decoder outputs. To light up
anyone of the segments, the corresponding line must be
driven low. Four input lines 00-03 are decoded to drive the
correct output lines. The outputs are named a, b, e, d, e,
t, and 9 corresponding to the display segments. All outputs
are active low. An enable, ena, is provided. When ena is low,
the decoder is enabled; when ena is high, all outputs are
driven to high impedance.

Figure 5. Simplified Block Diagram: seyen-segment Display
Decoder

Design Method

Figures 5 and 6 show the simplified block diagram and the
source file for the ABEL TO implementation of the display
decoder. The FLAG statement is used to make sure that the
programmer load file is in the Motorola Exorciser format.
The binary inputs and the decoded outputs are grouped into
the sets bed and led to simplify notation. The constants ON

and OFF are declared so that the design can be described
in terms of turning a segment on or off. To turn a segment
on, the appropriate line must be driven low, thus ON is
declared as 0 and OFF as 1.

The design is described in two sections: an equations
section and a truth table section. The decoding function is
described with a truth table that specifies the outputs
required for each combination of inputs. The first line of the
truth table (the truth table header) names the inputs and
outputs. In this example, the inputs are contained in the set
named bed and the outputs are in led. The body of the truth
table defines the input-to-output function. Because the
design decodes a number to a seven-segment display,
values for bed are expressed as decimal numbers, and
values for led are expressed with the constants ON and OFF
that were defined in the declarations section of the source
file. This makes the truth table easy to read and understand;
the incoming value is a number and the outputs are on and
off signals to the LED.

The input and output values could have just as easily been
described in another form. Take for example the line in the
truth table:

5 -> [ON,OFF,ON,ON,OFF,ON,ON]

This could have been written in the equivalent form:

[0,1,0,1] - > 36
In this second form, 5 was expressed as a set containing
binary values, and the LED set was converted to decimal.
(Remember that ONwas defined as 0 and OFF was defined
as 1.) Either of the two forms is valid, but the first is more
appropriate for this design. The first form can be read as,
"the number five turns on the first segment, turns off the
second, ... " whereas the second form cannot be so easily
translated into terms meaningful for this design.

Test Vectors

The test vectors for this design test the decoder outputs
for the ten valid combinations of input bits. The enable is
also tested by setting ena high for the different
combinations. All outputs should be at high impedance
whenever ena is high. If they are not, an error has occurred.

Summary
Two designs described with the ABEL'· design language have
been shown. The first design shows how Boolean equations with
logical and relational operators are used to describe an address
decoder. The second design shows how a truth table describes a
seven-segment display decoder design for a PLE logic circuit. In
both designs, test vectors were written to test the function of the
design using ABEL'·'s simulator. In addition to the Boolean
equations and truth table shown in these examples, ABEL'·
features a state diagram structure. The state diagram allows the
designer to fully describe state machines in terms of their states
and state transitions.

Regardless of the method used to describe logic, ABEL'·'s
automatic logic reduction and simulation ensure that the
design uses as few terms as possible and that it operates
as the designer intended. The end results are savings in
time, devices, board space, and money.



module bcd7rom flag '-d82'
title 'seven segment display
Oata I/O Corp Redmond WA

a

decoder
15 Mar 1984'

03,D2,Dl,00
a.,b,c,d,e,'f,g
erta

pirl 10,11,12,13;
pin 1,2,3,4,5,6,7;
pir, 15;

bcd [03,02,01,OOJ;
led [a, b, c, d, e, f, gJ;

ON,OFF 0,1; .. fot' CClmrnOYI arlode LEOs
L, H, X, Z 0, 1,. X.,. Z.

tt'uth table (bcd -) led)
input outputs

a b c d e f g

° -) [ ON, ON, ON, ON, ON, ON, OFFJ;
1 -) [OFF, ON, ON, OFF, OFF, OFF, OFFJ;
2 -) [ ON, ON, OFF, ON, ON, OFF, ONJ;
3 -) [ ON, ON, ON, ON, OFF, OFF, ONJ;
4 -) [OFF, ON, ON, OFF, OFF, ON, ONJ;
5 -) [ ON, OFF, ON, ON, OFF, ON, ONJ;
5 -) [ ON, OFF, ON, ON, ON, ON, ONJ;
7 -) [ ON, ON, ON, OFF, OFF, OFF, OFFJ;
8 -) [ ON, ON, ON, ON, ON, ON, ONJ;
9 -) [ ON, ON, ON, ON, OFF, ON, ONJ;

test vectors ([ena,bcdJ -) led).. ir,puts outputs
a b c d e f g

[L, 1J -) [OFF, ON, ON, OFF, OFF, OFF, OFFJ;
[L,2] -) [ ON, ON, OFF, ON, ON, OFF, ON];
[L,3J -) [ ON, ON, ON, ON, OFF, OFF, ONJ;
[L,4J -) [OFF, ON, ON, OFF, OFF, ON, ONJ;
[L,5J -) [ ON, OFF, ON, ON, OFF, ON, ONJ;
[L,6J -) [ ON, OFF, ON, ON, ON, ON, ON];
[L,7J -) [ ON, ON, ON, OFF, OFF, OFF, OFF];
[L,8] -) [ ON, ON, ON, ON, ON, ON, ONJ;
[L,9] -) [ ON, ON, ON, ON, OFF, ON, ONJ;
[L,OJ -) [ ON, ON, ON, ON, ON, ON, OFFJ;
[H,5J -) [ Z, Z, Z, Z, Z, Z, ZJ;
[H,9J -) [ Z, Z, Z, Z, Z, Z, Z];
[H, OJ -) [ Z, Z, Z, Z, Z, Z, ZJ ;

end bcd7ro::>m

Figure 6. Source File: Seven-Segment Display Decoder

9·72 Monolithic W Memories



The Universal Compiler
For

Programmable Logic

CUPL is the first software CAD tool designed especially for the support
of all programmable logic devices (PLDs), including PALs and PROMs. It
was developed specifically for YOU, the Hardware Design Engineer. Each
feature of the CUPL language has been chosen to make using programmable
logic easier and faster than conventional TTL logic design.

MAJQR FEATURES Qf ~
1. UNIVERSAL

a. PRODUCT SUPPORT: CUPL supports products from every
manufacturer of programmable logic. With CUPL you are free to
use not only PALS, but also other programmable logic devices.

b. PALASM CONVERSIONS: CUPL has a PALASM to CUPL language
translator which allows for an easy cQnversion from your
previous PALASM designs to CUPL.

c. LOGIC PROGRAMMER COMPATIBILITY: CUPL produces a standard JEDEC
download file and is compatible with any logic programmer that
uses JEDEC files.

High Level Language means that the software has features that allow you
to work in terms that are more like the way you think than like the
final PLD programming pattern. Examples of these are:

FLEXIBLE INPUT: CUPL gives the engineer complete freedom in
entering logic descriptions for their design:

- EQUATIONS
- TRUTH TABLES
- STATE MACHINE SYNTAX

b. EXPRESSION SUBSTITUTION: This allows you to pick a name for an
equation and then, rather than write the equation each time it
is used, you need only use the name. CUPL will properly
substitute the equation during the compile process.

2381 Zanker Rd., Suite 150, San Jose, CA 95131 (408) 942-8787

9-73



c. SHORTHAND FEATURES: Instead of wr iting out fUlly expanded
equations CUPL provides various shorthand capabilities such as:

- LIST NOTATION: Rather than [A7,A6,AS,A4,A3,A2,Al,AO]
CUPL only requires [A7••0]

- BIT FIELDS: A group of bits may be assigned to a name,
asin FIELD ADDR = [A7••0]
Then ADDR may be used in other expressions

Rather than AIS
Al5
Al5

CUPL only requires

& !A14 #
& Al4 & !Al3 #
& Al4 & Al3 & !A12

ADDR: [8000••EFFF]

- THE DISTRIBUTIVEPROPERTY:
From Boolean Algebra, where
is replaced by

A & (B # C)
A & B # A & C

- DeMORGAN'S THEOREM:
From Boolean Algebra, where
is replaced by

! (A & B)

!A # !B

CUPL provides a template file which provides a standard "fill-in-the-
blanks" documentation system that is uniform among all CUPL users. Also,
CUPL allows for free form comments through out your work so there can be
detailed explanations included in each part of the project.

CUPL includes a comprehensive error checking capability with detailed
error messages designed to lead you to the source of the problem.

CUPL contains the fastest and most powerful minimizer offered for
Programmable Logic equation reduction. The minimizer allows the choice
of various levels of minimization ranging from just fitting into the
target device to the absolute minimum.

With CSIM, the CUPL Simulator, you can simulate your logic prior to
programming an actual device. Not only can this save devices but it can
help in debugging a system level problem.



Once the stimulus/response function table information has been entered
into the simulator, CSIM will verify the associated test vectors and
append them to the JEDEC file for downloading to the logic programmer.
The programmer will verify not only the fuse map, but also the
functionality of the PLD, giving you added confidence in the operation
of your custom part.

CUPL is designed for growth so as new PALs and other devices are
introduced you will be kept current with updated device libraries and
product enhancements.

In the following design example, a single PAL (or PROM) is used to
replace four TTL packages on the interface card for an IBM-PC computer.
The Prototype I/O Channel Interface Card, as supplied by IBM, uses four
SSI packages to decode the ten bit I/O address and control the direction
and enable for the bus buffer on the PCB. The PAL approach conserves
real estate and also adds flexibility to decode not only the pre-
assigned address, but the ability to change the board address to any
location in the I/O map by merely replacing the programmable device.

The inputs to the decoding logic are the expansion bus addresses AO thru
A9. The logic compares the address on the expansion bus and asserts the
nIO_D~CODE" signal when the correct address range of 3FO-3FF is seen.
In addition, the "ENABLE" signal is also asserted if either the I/O READ
or I/O WRITE signals are active during this time. The READ signal,
which controls the direction of the data bus buffer, is asserted
whenever I/O READ is active and AEN, the DMA Address enable signal is
inactive. The AEN signal is negated when the microprocessor has control
of the address bus and is generating an I/O cycle.



First, all device pins are assigned in the logic description file (see
figure 1) using CUPL's pin declaration statements. Note the use of
indexed variables for the address bus allows a simple assignment for
pins 1 thru 8. The active polarity for input and output pins are made
in these declarations, so the designer need only be concerned with the
logic instead of vol tage levels.
The address bus is assigned a name using the FIELD statement. This lets
the designer then describe the desired address range with the single
equation:

range = ioadr: [300•.31FJ ~
instead of the difficult to understand

This range expression is then used in the output equation for la_DECODE
and ENABLE. Since ENABLE may be asserted whenever lOR or lOW are true,
the intermediate variable IOREQ is created to define this condition.
The resultant CUPL equation for ENABLE is simply

Finally, the READ signal is created using the active lOR and the
inactive AEN signals as follows:

Note that fO,r a device such as the PAL16L8 which has a fixed inverting
buffer on all of its output pins, CUPL will automatically convert the
logic equations when an output is desired to be active-level HI, as with
the READ output above.

CUPL will create a standard JEDEC output file which is compatible with
most 199ic programmers. A simple serial download link is all that is
usually required to transfer the fuse information to the programmer. In
addition, CUPL generates an extensive documentation file which assists
the designer in analyzing his/her design. Figure 2 shows a small
section of this file, illustrating such features as pin and variable
names, product term utilization, and other information.



PARTNo
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

P90001234
PCIO ;
02/14/85 ;
01 ;
Kahl/Osann ;
Assisted Technology
PC Proto Board ;
U2 ;

I***~'****************************************************************1
1* This device provides a one-chip liD interface for an equivalent *1
1* of the IBM-PC proto board. This logic description may be placed *1
1* in either a PROM or PAL without alteration. *1
1********************************************************************1
1* Allowable Target Device Types: PAL--) PAL16L8, PAL16P8 *1
1* PRoM-) PLE12P4 *1
I*************************'~******************************************1

1** Inputs **1

PIN [1.•8J [a2..'3J 1* CPU Addt'ess bits 0 thru '3 *1
PIN '3 ael"l 1* DMA Addt'ess EY',able*1
PIN 17 ! iot"' 1* I/O Read Stt'c·be (active LO> *1
PIN 18 ! iow 1* liD Wri te Strc.be (act ive LO> *1

1** Out puts **1

PIN if:
PIN 13
PIN 1LI

1* Direction Control For Bus Buffer *1
1* Enable For Bus Buffer *1
1* Decoded liD Strobe for On Board Use *1

t'ead
'enable
~io decode

ioadr:(300 ..31FJ & 'aen ; 1* Decoded liD Address Range and *1
1* not DMA cycle *1



CUPL
Device
Pa t't no
Name
Revision
Date
Desi gnet'
C-:,mpar,y
Assembly
LClcat iort

2.02a
01618 DLIB-c-18-5
P90001234
PCIO
01
02/14/85
Kahl/Osann
Assisted Technology
PC Pt,,:,t0 B-:,at'd
U2

P-:,l Name Ext Pir, Type Used Max

a2 V
a3 2 V
a4 3 V
a5 4 V
a6 '" V...J
a7 6 V
a8 7 V
a9 8 V
aer, '3 V
erlable 13 V 2 7
i CI -decc,de 14 V 7
ioadt' 0 F
iClr 17 V
ioreq 0 I 2
iOIN 18 V
t'ange 0 I 1
read 12 V 2 7
enable oe 13 D 1 1
io dece,de cle 14 D 1 1
iClr c:.e 17 D 1 1
iCtW t:te 18 D 1 1
read .:te 12 D 1 1

LEGEND D defa~\lt var F field I ir,tet'mediat e var
U o.mdefined V vat' X extended vat'
N r,ode M extended r,c,de

Figure 2.



CUPL-GTS
DRAW LOGIC SCHEMATICS FOR PAL DESIGNS!

In recent years, programs like CUPL and ABEL have become
available to provide high level language support for PAL designs.
These languages allow the designer to represent a PAL function in
terms of high-level equations, truth tables or state machines.
All of these logic description formats are non-graphical in
nature and require a good working knowledge of the computer they
run on.
Many hardware designers, however, are most comfortable with the
traditional logic schematic and have historically had little
re~son to use a computer in the design process. Use of a high-
level PAL design language presents most of us with a variety of
si~ultaneous unknowns:

1. The computer and its operating system.
2. The full screen editor necessary to create the logic

description file.

Where this combination places an unnecessary burden on the
designer, an alternative is now available.
CUPL-GTS is a powerful combination of hardware and software which
turns an IBM-PC type computer into a programmable logic
wonkstation which allows the user to draw logic schematics for
the function of a PAL. A basic premise in creating CUPL-GTS was
to provide a friendly environment where the user is isolated from
the traditional keyboard as much as possible. To this end,
virtually all functions can be actuated with one button by way of
the mouse and a series of pop-up menus which ease the user's
task. An area is provided at the top of the CUPL-GTS screen for
prompting the user regarding the next operation in a command
se~uence. Highlighting of various elements on the screen is
coordinated with these prompts to enhance their effectiveness.
For the mos~ part, the user need only utilize the conventional
keyboard for defining symbolic names for wires, pins, objects,
and files.
An on-screen HELP facility is provided to aid the user with CUPL-
GTS commands. In addition to the basic set of object types which
can be easily picked from a pop-up menu, the ability to call up
macro-objects is also provided. These macro-objects have been
previously drawn using CUPL-GTS and stored away on the disk under
their own symbolic name.



After a logic schematic has been entered, the user may quickly
check to see if the design fits in a specific PAL. This is done
by selecting the "Translate to PLD" command from the main menu
which automatically invokes the GTS translation programs. These
programs run in an on-screen window which overlays the graphical
information, providing feedback in the form of error messages
displayed in this window. Following the automatic execution of
these programs, the cursor is returned to the user who can then
continue to work in the graphics environment without ever having
fUlly left. In this way many errors can be quickly determined
and remedied without ever having to let go of the mouse.
When the user wishes a hard copy version of a design, the print
command from the main menu may be selected. This causes the GTS
print program to execute in an on-screen window according to the
printer configuration file (PRINTCAP) which is stored on the
disk. The PRINTCAP file allows the user to configure the GTS
print function for any dot matrix printer they might have.
Often a logic description not fit in a particular PAL due to a
logic capacity (product-term) limitation. When this occurs, the
universal capability of CUPL-GTS will easily allow the user to
try placing this same logic in a different PAL of similar
architecture.
Since CUPL-GTS incorporates CUPL the high level language in its
internal operation, it also benefits from CUPL's powerful "Quine
Procedure" logic minimizer. This is especially advantageous for
CUPL-GTS as logic descriptions showing many levels of gates can
be very deceptive in their ability to consume the logic
capacity of a PAL. The presence of the logic minimizer can
eliminate unnecessary and redundant logical functions, and
maximizes the probability that a design will fit in a target PAL.
Also included with CUPL-GTS is the CUPL simulator, CSIM, which
allows the user to simulate a logic design prior to physically
creating a programmed PAL. Not only can this save devices, but
it can help significantly in debugging a system level problem.
CUPL-GTS is desinged for growth and expandability. As new
programmable logic devices are introduced users will be kept
current with updated device libraries and product enhancements.
Most of us first use PAL devices to replace TTL in order to
shrink a design and/or add functionality. The following example
shows how the simple I/O decoder design previously discussed
would appear on the CUPL-GTS screen prior to translation to a
PAL16L8, PAL16P8 or PLE12P4.



I Select Command From Main Menu

LSOO

RANGE

LS04 + ENABLE 13

+ 10
DECODE 14

Help

Change scale

Set Center

Redraw SCreen

Add Object

Add Wire

Add Pin

Change Object

Name/Rename

Move

Delete

Query

Find

Translate To PLO

Load From Disk

save On Disk

Quit

More ...



Monolithic W Menrories


